A multi-label Hyperspectral image classification method with deep learning features

被引:11
|
作者
Wang, Cong [1 ]
Zhang, Peng [1 ]
Zhang, Yanning [1 ]
Zhang, Lei [1 ]
Wei, Wei [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Technol, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Stacked denoising autoencoder; logistic regression; hyperspectral image; multi-label classification; LOW-RANK;
D O I
10.1145/3007669.3007742
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image (HSI) classification is an important application of HSI analysis, which aims at assigning a class label to each pixel. However, considering that mixed pixels commonly exist in HSI, assigning a unique label to each pixel is imprecise. To better analysis the scene imaged in an HSI, we propose a multi-label hyperspectral image classification approach based on deep learning in this study. First, stacked denoising autoencoder (SDAE) method is used to extract deep features for each pixel without supervision, which can well represent the nonlinearity of the mixed pixels in a high dimensional feature space. Then, multi-label logistic regression method assigns each pixel multi labels. Experimental results on the synthetic data, real hyperspectral data and down-sampling hyperspectral data demonstrate the effectiveness of the proposed method.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [1] Deep Semantic Dictionary Learning for Multi-label Image Classification
    Zhou, Fengtao
    Huang, Sheng
    Xing, Yun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3572 - 3580
  • [2] Multi-label Garbage Image Classification Based on Deep Learning
    Yan, Kang
    Si, Wenyu
    Hang, Jin
    Zhou, Hong
    Zhu, Quanyin
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 150 - 153
  • [3] THE UTILIZATION OF MULTI-LABEL SAMPLES FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hao, Qiaobo
    Li, Shutao
    Kang, Xudong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2981 - 2984
  • [4] Learning Label Specific Features for Multi-Label Classification
    Huang, Jun
    Li, Guorong
    Huang, Qingming
    Wu, Xindong
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 181 - 190
  • [5] Reconstruction Regularized Deep Metric Learning for Multi-Label Image Classification
    Li, Changsheng
    Liu, Chong
    Duan, Lixin
    Gao, Peng
    Zheng, Kai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (07) : 2294 - 2303
  • [6] Learning Video Features for Multi-label Classification
    Garg, Shivam
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 325 - 337
  • [7] Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification
    Hang, Jun-Yi
    Zhang, Min-Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9860 - 9871
  • [8] MULTIMODAL LEARNING FOR MULTI-LABEL IMAGE CLASSIFICATION
    Pang, Yanwei
    Ma, Zhao
    Yuan, Yuan
    Li, Xuelong
    Wang, Kongqiao
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1797 - 1800
  • [9] Causal multi-label learning for image classification
    Tian, Yingjie
    Bai, Kunlong
    Yu, Xiaotong
    Zhu, Siyu
    NEURAL NETWORKS, 2023, 167 : 626 - 637
  • [10] Multi-label Active Learning for Image Classification
    Wu, Jian
    Sheng, Victor S.
    Zhang, Jing
    Zhao, Pengpeng
    Cui, Zhiming
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5227 - 5231