Martian dust devil electron avalanche process and associated electrochemistry

被引:17
|
作者
Jackson, Telana L. [1 ]
Farrell, William M. [1 ]
Delory, Gregory T. [2 ]
Nithianandam, Jeyasingh [3 ]
机构
[1] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[3] Morgan State Univ, Dept Elect Engn, Baltimore, MD 21251 USA
关键词
OXIDANT ENHANCEMENT; STORMS; MARS; FIELD; GENERATION; SIMULATION; METHANE; CLOUDS; MODEL;
D O I
10.1029/2009JE003396
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work, these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Is the electron avalanche process in a martian dust devil self-quenching?
    Farrell, W. M.
    McLain, J. L.
    Collier, M. R.
    Keller, J. W.
    Jackson, T. J.
    Delory, G. T.
    ICARUS, 2015, 254 : 333 - 337
  • [2] Effect of dust absorption on the electron avalanche process occurring within Martian dust storms
    Jackson, Telana L.
    Farrell, William M.
    Delory, Greg T.
    Nithianandam, Jeyasingh
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (16)
  • [3] The Martian dust devil electron avalanche: Laboratory measurements of the E-field fortifying effects of dust-electron absorption
    Farrell, W. M.
    McLain, J. L.
    Collier, M. R.
    Keller, J. W.
    ICARUS, 2017, 297 : 90 - 96
  • [4] The sound of a Martian dust devil
    Murdoch, N.
    Stott, A. E.
    Gillier, M.
    Hueso, R.
    Lemmon, M.
    Martinez, G.
    Apestigue, V.
    Toledo, D.
    Lorenz, R. D.
    Chide, B.
    Munguira, A.
    Sanchez-Lavega, A.
    Vicente-Retortillo, A.
    Newman, C. E.
    Maurice, S.
    de la Torre Juarez, M.
    Bertrand, T.
    Banfield, D.
    Navarro, S.
    Marin, M.
    Torres, J.
    Gomez-Elvira, J.
    Jacob, X.
    Cadu, A.
    Sournac, A.
    Rodriguez-Manfredi, J. A.
    Wiens, R. C.
    Mimoun, D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] The sound of a Martian dust devil
    N. Murdoch
    A. E. Stott
    M. Gillier
    R. Hueso
    M. Lemmon
    G. Martinez
    V. Apéstigue
    D. Toledo
    R. D. Lorenz
    B. Chide
    A. Munguira
    A. Sánchez-Lavega
    A. Vicente-Retortillo
    C. E. Newman
    S. Maurice
    M. de la Torre Juárez
    T. Bertrand
    D. Banfield
    S. Navarro
    M. Marin
    J. Torres
    J. Gomez-Elvira
    X. Jacob
    A. Cadu
    A. Sournac
    J. A. Rodriguez-Manfredi
    R. C. Wiens
    D. Mimoun
    Nature Communications, 13
  • [6] Diurnal variation in martian dust devil activity
    Chapman, R. M.
    Lewis, S. R.
    Balme, M.
    Steele, L. J.
    ICARUS, 2017, 292 : 154 - 167
  • [7] Measurements of Martian dust devil winds with HiRISE
    Choi, D. S.
    Dundas, C. M.
    GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [8] Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity
    Harrison, R. G.
    Barth, E.
    Esposito, F.
    Merrison, J.
    Montmessin, F.
    Aplin, K. L.
    Borlina, C.
    Berthelier, J. J.
    Deprez, G.
    Farrell, W. M.
    Houghton, I. M. P.
    Renno, N. O.
    Nicoll, K. A.
    Tripathi, S. N.
    Zimmerman, M.
    SPACE SCIENCE REVIEWS, 2016, 203 (1-4) : 299 - 345
  • [9] Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity
    R. G. Harrison
    E. Barth
    F. Esposito
    J. Merrison
    F. Montmessin
    K. L. Aplin
    C. Borlina
    J. J. Berthelier
    G. Déprez
    W. M. Farrell
    I. M. P. Houghton
    N. O. Renno
    K. A. Nicoll
    S. N. Tripathi
    M. Zimmerman
    Space Science Reviews, 2016, 203 : 299 - 345
  • [10] Automated width measurements of Martian dust devil tracks
    Statella, Thiago
    Pina, Pedro
    da Silva, Erivaldo Antonio
    AEOLIAN RESEARCH, 2016, 20 : 1 - 6