HGG and LGG Brain Tumor Segmentation in Multi-Modal MRI Using Pretrained Convolutional Neural Networks of Amazon Sagemaker

被引:11
|
作者
Lefkovits, Szidonia [1 ]
Lefkovits, Laszlo [2 ]
Szilagyi, Laszlo [2 ,3 ]
机构
[1] George Emil Palade Univ Med Pharm Sci & Technol T, Dept Elect Engn & Informat Technol, Gheorghe Marinescu St 38, Targu Mures 540139, Romania
[2] Sapientia Univ, Computat Intelligence Res Grp, Sos Sighisoarei 1-C, Corunca 540485, Romania
[3] Obuda Univ, John von Neumann Fac Informat, Biomat Inst, Becsi St 96-B, H-1034 Budapest, Hungary
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 07期
关键词
brain tumor segmentation; MRI; deep learning; CNN; AWS Sagemaker;
D O I
10.3390/app12073620
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Automatic brain tumor segmentation from multimodal MRI plays a significant role in assisting the diagnosis, treatment, and surgery of glioblastoma and lower glade glioma. In this article, we propose applying several deep learning techniques implemented in AWS SageMaker Framework. The different CNN architectures are adapted and fine-tuned for our purpose of brain tumor segmentation.The experiments are evaluated and analyzed in order to obtain the best parameters as possible for the models created. The selected architectures are trained on the publicly available BraTS 2017-2020 dataset. The segmentation distinguishes the background, healthy tissue, whole tumor, edema, enhanced tumor, and necrosis. Further, a random search for parameter optimization is presented to additionally improve the architectures obtained. Lastly, we also compute the detection results of the ensemble model created from the weighted average of the six models described. The goal of the ensemble is to improve the segmentation at the tumor tissue boundaries. Our results are compared to the BraTS 2020 competition and leaderboard and are among the first 25% considering the ranking of Dice scores.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Multi-modal Brain Tumor Segmentation Utilizing Convolutional Neural Networks
    Jakab, Marek
    Stevuliak, Marek
    Benesova, Wanda
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [2] Multi-modal MRI segmentation of sarcoma tumors using convolutional neural networks
    Holbrook, M.
    Blocker, S. J.
    Mowery, Y. M.
    Badea, C. T.
    MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [3] Splenomegaly Segmentation on Multi-Modal MRI Using Deep Convolutional Networks
    Huo, Yuankai
    Xu, Zhoubing
    Bao, Shunxing
    Bermudez, Camilo
    Moon, Hyeonsoo
    Parvathaneni, Prasanna
    Moyo, Tamara K.
    Savona, Michael R.
    Assad, Albert
    Abramson, Richard G.
    Landman, Bennett A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1185 - 1196
  • [4] Multi-modal page stream segmentation with convolutional neural networks
    Wiedemann, Gregor
    Heyer, Gerhard
    LANGUAGE RESOURCES AND EVALUATION, 2021, 55 (01) : 127 - 150
  • [5] Multi-modal page stream segmentation with convolutional neural networks
    Gregor Wiedemann
    Gerhard Heyer
    Language Resources and Evaluation, 2021, 55 : 127 - 150
  • [6] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Thaha, M. Mohammed
    Kumar, K. Pradeep Mohan
    Murugan, B. S.
    Dhanasekeran, S.
    Vijayakarthick, P.
    Selvi, A. Senthil
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
  • [7] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    M. Mohammed Thaha
    K. Pradeep Mohan Kumar
    B. S. Murugan
    S. Dhanasekeran
    P. Vijayakarthick
    A. Senthil Selvi
    Journal of Medical Systems, 2019, 43
  • [8] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Pereira, Sergio
    Pinto, Adriano
    Alves, Victor
    Silva, Carlos A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1240 - 1251
  • [9] Brain Tumor Classification Using Pretrained Convolutional Neural Networks
    Daniel, Mihalas Constantin
    Ruxandra, Lascu Mihaela
    2021 16TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2021, : 130 - 133
  • [10] Brain Tumor Segmentation for Multi-Modal MRI with Missing Information
    Xue Feng
    Kanchan Ghimire
    Daniel D. Kim
    Rajat S. Chandra
    Helen Zhang
    Jian Peng
    Binghong Han
    Gaofeng Huang
    Quan Chen
    Sohil Patel
    Chetan Bettagowda
    Haris I. Sair
    Craig Jones
    Zhicheng Jiao
    Li Yang
    Harrison Bai
    Journal of Digital Imaging, 2023, 36 (5) : 2075 - 2087