Dynamic thalamus parcellation from resting-state fMRI data

被引:49
|
作者
Ji, Bing [1 ,2 ,3 ]
Li, Zhihao [2 ,3 ,4 ]
Li, Kaiming [5 ]
Li, Longchuan [2 ,3 ,6 ]
Langley, Jason [2 ,3 ]
Shen, Hui [7 ]
Nie, Shengdong [1 ]
Zhang, Renjie [1 ]
Hu, Xiaoping [2 ,3 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
[2] Emory Univ, Biomed Engn, Atlanta, GA 30322 USA
[3] Georgia Inst Technol, Atlanta, GA 30322 USA
[4] Shenzhen Univ, Inst Affect & Social Neurosci, Shenzhen 518060, Guangdong, Peoples R China
[5] Sichuan Univ, West China Hosp, Huaxi MR Res Ctr, Chengdu 610041, Peoples R China
[6] Emory Univ, Sch Med, Childrens Healthcare Atlanta, Marcus Autism Ctr, Atlanta, GA 30322 USA
[7] Natl Univ Def Technol, Coll Mechatron & Automat, Changsha 410073, Hunan, Peoples R China
关键词
resting state; functional connectivity; thalamus; dynamic parcellation; normalized spectral clustering; INDEPENDENT COMPONENT ANALYSIS; FUNCTIONAL CONNECTIVITY; PREFRONTAL CORTEX; BASAL GANGLIA; NUCLEI; SEGMENTATION; SUBDIVISIONS; ORGANIZATION; REVEALS; NETWORK;
D O I
10.1002/hbm.23079
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The thalamus is a relay center between various subcortical brain areas and the cerebral cortex with delineation of its constituent nuclei being of particular interest in many applications. While previous studies have demonstrated efficacy of connectivity-based thalamus segmentation, they used approaches that do not consider the dynamic nature of thalamo-cortical interactions. In this study, we explicitly exploited the dynamic variation of thalamo-cortical connections to identify different states of functional connectivity and performed state-specific thalamus parcellation. With normalized spectral clustering successively applied in temporal and spatial domains, nine thalamo-cortical connectivity states were identified and the dynamic thalamus parcellation revealed finer thalamic structures with improved atlas correspondence. The present results extend our understanding of thalamo-cortical connectivity and provide a more comprehensive view of the thalamo-cortical interaction. Hum Brain Mapp 37:954-967, 2016. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:954 / 967
页数:14
相关论文
共 50 条
  • [1] Spatially constrained hierarchical parcellation of the brain with resting-state fMRI
    Blumensath, Thomas
    Jbabdi, Saad
    Glasser, Matthew F.
    Van Essen, David C.
    Ugurbil, Kamil
    Behrens, Timothy E. J.
    Smith, Stephen M.
    NEUROIMAGE, 2013, 76 (01) : 313 - 324
  • [2] Improved estimation of dynamic connectivity from resting-state fMRI data
    Cai, Biao
    Stephen, Julia M.
    Wilson, Tony W.
    Calhoun, Vince D.
    Wang, Yu-Ping
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [3] Cohesive parcellation of the human brain using resting-state fMRI
    Nemani, Ajay
    Lowe, Mark J.
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 377
  • [4] Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
    Shen, X.
    Tokoglu, F.
    Papademetris, X.
    Constable, R. T.
    NEUROIMAGE, 2013, 82 : 403 - 415
  • [5] Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data
    Shen, X.
    Papademetris, X.
    Constable, R. T.
    NEUROIMAGE, 2010, 50 (03) : 1027 - 1035
  • [6] Functional parcellation of the hippocampus from resting-state dynamic functional connectivity
    Zhong, Qi
    Xu, Huaze
    Qin, Jian
    Zeng, Ling -Li
    Hu, Dewen
    Shen, Hui
    BRAIN RESEARCH, 2019, 1715 : 165 - 175
  • [7] Robust brain parcellation using sparse representation on resting-state fMRI
    Yu Zhang
    Svenja Caspers
    Lingzhong Fan
    Yong Fan
    Ming Song
    Cirong Liu
    Yin Mo
    Christian Roski
    Simon Eickhoff
    Katrin Amunts
    Tianzi Jiang
    Brain Structure and Function, 2015, 220 : 3565 - 3579
  • [8] Robust brain parcellation using sparse representation on resting-state fMRI
    Zhang, Yu
    Caspers, Svenja
    Fan, Lingzhong
    Fan, Yong
    Song, Ming
    Liu, Cirong
    Mo, Yin
    Roski, Christian
    Eickhoff, Simon
    Amunts, Katrin
    Jiang, Tianzi
    BRAIN STRUCTURE & FUNCTION, 2015, 220 (06): : 3565 - 3579
  • [9] Multi-Session Parcellation of the Human Brain Using Resting-State fMRI
    Ma, Haoyu
    Lei, Renhao
    Sun, Junxiao
    Kong, Youyong
    PROCEEDINGS OF THE 2018 IEEE 22ND INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN ((CSCWD)), 2018, : 336 - 340
  • [10] Predicting behavior through dynamic modes in resting-state fMRI data
    Ikeda, Shigeyuki
    Kawano, Koki
    Watanabe, Soichi
    Yamashita, Okito
    Kawahara, Yoshinobu
    NEUROIMAGE, 2022, 247