Effect of Fe3O4 concentration on 3D gel-printed Fe3O4/CaSiO3 composite scaffolds for bone engineering

被引:7
|
作者
Chen, Cunguang [1 ]
Wu, Jialei [1 ]
Wang, Siqi [1 ]
Shao, Huiping [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
关键词
Fe3O4; WMFs; Coatings; Magnetic; Calcium silicate; Composite scaffolds; NANOPARTICLES; FIELD;
D O I
10.1016/j.ceramint.2021.04.105
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, porous calcium silicate (CaSiO3) scaffolds were prepared by 3D gel-printing (3DGP) method and Fe3O4 water-based magnetic fluids (WMFs) were prepared by phacoemulsification compound chemical coprecipitation method. Fe3O4 WMFs were coated on CaSiO3 scaffolds surface to prepare Fe3O4/CaSiO3 composite scaffolds. The effect of WMFs with different Fe3O4 concentrations on porous CaSiO3 scaffolds was studied. The composition and morphological characteristics of porous scaffolds were analyzed by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis. The magnetic properties were tested by vibrating sample magnetometer (VSM). The stability of Fe3O4 WMFs coatings and the degradability of composite scaffolds were tested by immersing them in simulated body fluid (SBF). The results show that when Fe3O4 concentration was 5.4% (w/v), the composite scaffolds had the highest saturation magnetization of 69.6 emu/g and the best stability in dynamic SBF. It is obviously that Fe3O4 WMFs coatings can be used for bone tissue engineering scaffolds repairing.
引用
收藏
页码:21038 / 21044
页数:7
相关论文
共 50 条
  • [1] The Effect of Addition Fe3O4 on the rGO/Fe3O4 Composite on Glucose Biosensor Performance
    Mufida, R. Y.
    Kusumawati, D. H.
    SEMINAR NASIONAL FISIKA (SNF) UNESA 2019, 2020, 1491
  • [2] Magnetoresistance of Fe3O4/Au/Fe3O4 and Fe3O4/Au/Fe spin-valve structures
    van Dijken, S
    Fain, X
    Watts, SM
    Nakajima, K
    Coey, JMD
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 280 (2-3) : 322 - 326
  • [3] Synthesis by ball milling and characterization of nanocrystalline Fe3O4 and Fe/Fe3O4 composite system
    Bonetti, E
    Del Bianco, L
    Signoretti, S
    Tiberto, P
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (03) : 1806 - 1815
  • [5] Oscillatory tunneling magnetoresistance in Fe3O4/GaAs/Fe3O4 junction
    Huang, Z.
    Yue, J.
    Wang, J.
    Zhai, Y.
    Xu, Y.
    Wang, B.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [6] Characterization for strontium titinate/Fe3O4 and TiN/Fe3O4 interfaces
    Lussier, A
    Idzerda, YU
    Stadler, S
    Ogale, SB
    Shinde, SR
    Venkatesan, V
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (04): : 1609 - 1613
  • [7] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds
    Ya Tuo
    Guangfei Liu
    Bin Dong
    Jiti Zhou
    Aijie Wang
    Jing Wang
    Ruofei Jin
    Hong Lv
    Zeou Dou
    Wenyu Huang
    Scientific Reports, 5
  • [8] Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds
    Ya, Tuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [9] Development of Fe3O4 integrated polymer/phosphate glass composite scaffolds for bone tissue engineering
    Govindan, Raji
    Karthi, Sekar
    Kumar, Govindan Suresh
    Girija, Easwaradas Kreedapathy
    MATERIALS ADVANCES, 2020, 1 (09): : 3466 - 3475
  • [10] Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method
    Mohanraj, Kannusamy
    Sivakumar, Ganesan
    SAINS MALAYSIANA, 2017, 46 (10): : 1935 - 1942