The physical mechanism for vortex merging

被引:169
|
作者
Cerretelli, C [1 ]
Williamson, CHK [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
关键词
D O I
10.1017/S0022112002002847
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we study the interaction of two co-rotating trailing vortices. It is well-known that vortices of like-sign ultimately merge to form a single vortex, and there has been much work on measuring and predicting the initial conditions for the onset of merger, especially concerning the critical vortex core radius. However, the physical mechanism causing this merger has received little attention. In this work, we directly measure the structure of the antisymmetric vorticity field that causes the co-rotating vortices to be pushed towards each other during merger. We discover that the form of the antisymmetric vorticity comprises two counter-rotating vortex pairs, whose induced velocity field readily pushes the two centroids together. The merging velocity computed from the antisymmetric vorticity field agrees closely with the merging velocity measured directly from the total (original) flow field. The co-rotating vortex pair evolves through four distinct phases. The initial stage comprises a diffusive growth, which can be either viscous or turbulent. In either case, the number of turns that they rotate around one another until the vortices start to merge increases with Reynolds number (Re). If one observes the streamlines in a rotating reference frame (moving with the vortices), then one finds an inner and outer recirculating region of the flow bounded by a separatrix streamline. When the vortices grow large enough in the first stage, diffusion across the separatrix places vorticity into the outer recirculating region of the flow, and this leads to the generation of the antisymmetric vorticity, causing convective merger. This second (convective) stage corresponds to the motion of the vortex centroids towards each other, and is a process which is almost independent of viscosity. During the late part of this stage, the antisymmetric vorticity is diminished by a symmetrization process, and the final merging into one vorticity structure is achieved by a second diffusive stage. The fourth and ultimate phase is one where the merged vortex core grows by diffusion.
引用
收藏
页码:41 / 77
页数:37
相关论文
共 50 条
  • [1] Numerical simulation of a physical experiment on two-dimensional vortex merging
    Caperan, Philippe
    Verron, Jacques
    Fluid Dynamics Research, 1988, 3 (1-4): : 87 - 92
  • [2] Numerical study on merging mechanism of co-rotating vortex pair
    Dang, Hui-Xue
    Chen, Zhi-Min
    Yao, Wei-Gang
    Meng, Xuan
    Gongcheng Lixue/Engineering Mechanics, 2007, 24 (10): : 70 - 73
  • [3] Physics of vortex merging
    Meunier, P
    Le Dizès, S
    Leweke, T
    COMPTES RENDUS PHYSIQUE, 2005, 6 (4-5) : 431 - 450
  • [4] On the physical mechanism of tip vortex cavitation hysteresis
    Amini, Ali
    Reclari, Martino
    Sano, Takeshi
    Iino, Masamichi
    Dreyer, Matthieu
    Farhat, Mohamed
    EXPERIMENTS IN FLUIDS, 2019, 60 (07)
  • [5] PHYSICAL MECHANISM OF VORTEX-RING CASCADE
    DABROWSKI, NJ
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1957, 24 (09): : 708 - 709
  • [6] On the physical mechanism of tip vortex cavitation hysteresis
    Ali Amini
    Martino Reclari
    Takeshi Sano
    Masamichi Iino
    Matthieu Dreyer
    Mohamed Farhat
    Experiments in Fluids, 2019, 60
  • [7] Vortex evolution and merging mechanism across 180° sharp bend for laminar inflow
    Ali, Nishab
    Tariq, Andallib
    Saifullah
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [8] The Dynamics of Barotropic Vortex Merging
    Chanh KIEU
    Advances in Atmospheric Sciences, 2016, 33 (08) : 987 - 995
  • [9] The dynamics of barotropic vortex merging
    Kieu, Chanh
    ADVANCES IN ATMOSPHERIC SCIENCES, 2016, 33 (08) : 987 - 995
  • [10] The dynamics of barotropic vortex merging
    Chanh Kieu
    Advances in Atmospheric Sciences, 2016, 33 : 987 - 995