Stationary and uniformly accelerated states in nonlinear quantum mechanics

被引:20
|
作者
Plastino, A. R. [1 ,2 ,3 ]
Souza, A. M. C. [4 ,6 ]
Nobre, F. D. [5 ,6 ]
Tsallis, C. [5 ,6 ,7 ]
机构
[1] Univ Nacl Buenos Aires Noreoeste UNNOBA, CeBio, Junin, Argentina
[2] Univ Nacl Buenos Aires Noreoeste UNNOBA, Secretaria Invest, Junin, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Junin, Argentina
[4] Univ Fed Sergipe, Dept Fis, BR-49100000 Sao Cristovao, Sergipe, Brazil
[5] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[6] Natl Inst Sci & Technol Complex Syst, BR-22290180 Rio De Janeiro, Brazil
[7] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 06期
关键词
STATISTICAL-MECHANICS; SCHRODINGER-EQUATION; SYSTEMS; DIFFUSION;
D O I
10.1103/PhysRevA.90.062134
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider two kinds of solutions of a recently proposed field theory leading to a nonlinear Schrodinger equation exhibiting solitonlike solutions of the power- law form e(q)(i(kx-wt)) , involving the q exponential function naturally arising within nonextensive thermostatistics [e(q)(2) equivalent to [1 + (1-q)z](1/(1-q)), with e(1)(z) = e(z)]. These fundamental solutions behave like free particles, satisfying p = hk, E = hw, and E = p(2)/2m (1 <= q < 2). Here we introduce two additional types of exact, analytical solutions of the aforementioned field theory. As a first step we extend the theory to situations involving a potential energy term, thus going beyond the previous treatment concerning solely the free- particle dynamics. Then we consider both bound, stationary states associated with a confining potential and also time- evolving states corresponding to a linear potential function. These types of solutions might be relevant for physical applications of the present nonlinear generalized Schrodinger equation. In particular, the stationary solution obtained shows an increase in the probability for finding the particle localized around a certain position of the well as one increases q in the interval 1 <= q < 2, which should be appropriate for physical systems where one finds a low- energy particle localized inside a confining potential.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A CRITERION FOR STATIONARY STATES IN QUANTUM-MECHANICS
    AUB, MR
    NIEDERREITER, H
    AMERICAN JOURNAL OF PHYSICS, 1983, 51 (09) : 818 - 819
  • [2] QUASI-STATIONARY STATES IN RELATIVISTIC QUANTUM MECHANICS
    MARX, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 21 - &
  • [3] STATIONARY STATES IN PROPER TIME QUANTUM-MECHANICS
    HERDEGEN, A
    ACTA PHYSICA POLONICA B, 1983, 14 (07): : 511 - 515
  • [4] Uniformly accelerated quantum counting detector in Minkowski and Fulling vacuum states
    Soares, M. S.
    Svaiter, N. F.
    Zarro, C. A. D.
    Menezes, G.
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [5] Quantum field and uniformly accelerated oscillator
    Kim, HC
    PHYSICAL REVIEW D, 1999, 59 (06)
  • [6] Quantum radiation of a uniformly accelerated refractive body
    Frolov, V
    Singh, D
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (18) : 3905 - 3916
  • [7] DOES A UNIFORMLY ACCELERATED QUANTUM OSCILLATOR RADIATE
    RAINE, DJ
    SCIAMA, DW
    GROVE, PG
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 435 (1893): : 205 - 215
  • [8] Quantum radiation of uniformly accelerated spherical mirrors
    Frolov, V
    Singh, D
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (15) : 3025 - 3038
  • [9] Influence of uniformly accelerated oscillator on quantum field
    Lau, YK
    PHYSICAL REVIEW D, 1996, 53 (06): : 3178 - 3189
  • [10] Quantum mechanics of stationary states of particles in a space–time of classical black holes
    M. V. Gorbatenko
    V. P. Neznamov
    Theoretical and Mathematical Physics, 2020, 205 : 1492 - 1526