Computing the Permanent of the Laplacian Matrices of Nonbipartite Graphs

被引:0
|
作者
Hu, Xiaoxue [1 ]
Kalaso, Grace [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
EIGENVALUES;
D O I
10.1155/2021/6621029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with Laplacian matrix L(G). Denote by per L(G) the permanent of L(G). In this study, we investigate the problem of computing the permanent of the Laplacian matrix of nonbipartite graphs. We show that the permanent of the Laplacian matrix of some classes of nonbipartite graphs can be formulated as the composite of the determinants of two matrices related to those Laplacian matrices. In addition, some recursion formulas on per L(G) are deduced.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] LAPLACIAN MATRICES OF GRAPHS
    MOHAR, B
    MATH/CHEM/COMP 1988, 1989, 63 : 1 - 8
  • [2] LAPLACIAN MATRICES OF GRAPHS - A SURVEY
    MERRIS, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 198 : 143 - 176
  • [3] Multipartite separability of Laplacian matrices of graphs
    Wu, Chai Wah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [4] Laplacian matrices of graphs. A survey
    Merris, Russell
    Linear Algebra and Its Applications, 1994, 197-98
  • [5] On the Energy and Spread of the Adjacency, Laplacian and Signless Laplacian Matrices of Graphs
    Das, Kinkar Chandra
    Ghalavand, Ali
    Tavakoli, Mostafa
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (03) : 545 - 566
  • [6] Computing the Laplacian spectra of some graphs
    Cardoso, Domingos M.
    Martins, Enide Andrade
    Robbiano, Maria
    Trevisan, Vilmar
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2645 - 2654
  • [7] On two Laplacian matrices for skew gain graphs
    Roy, Roshni T.
    Hameed, Shahul K.
    Germina, K. A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) : 125 - 135
  • [8] PERMANENT OF THE LAPLACIAN MATRIX OF TREES AND BIPARTITE GRAPHS
    BRUALDI, RA
    GOLDWASSER, JL
    DISCRETE MATHEMATICS, 1984, 48 (01) : 1 - 21
  • [9] Signed distance Laplacian matrices for signed graphs
    Roy, Roshni T.
    Germina, K. A.
    Hameed, S. Shahul
    Zaslavsky, Thomas
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (01): : 106 - 117
  • [10] Inertias of Laplacian matrices of weighted signed graphs
    Monfared, K. Hassani
    MacGillivray, G.
    Olesky, D. D.
    van den Driessche, R.
    SPECIAL MATRICES, 2019, 7 (01): : 327 - 342