Matching in Toeplitz graphs

被引:0
|
作者
Ramezani, F. [1 ,2 ]
Masouleh, M. Tale [1 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16765-3381, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Toeplitz graphs; Matching number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a sequence of positive integers n, t(1), t(2), . . . , t(k), with t(1), t(2), . . . , t(k) <= n - 1, the Toeplitz graph T-n < t(1), t(2), . . . , t(k)> is a graph on the vertex set {v(1), v(2), . . . , v(n)}, where the vertices v(i), v(j) are adjacent if and only if vertical bar i - j vertical bar is an element of {t(1), t(2), . . . , t(k)}. The matching number of a graph G, denoted by mu(G) is the size of a maximum matching in G. In this paper we introduce an algorithm to find a maximum matching in the graph T-n < s,t > for co-prime integers s, t, and discuss on the matching number of some families of Toeplitz graphs.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 50 条
  • [1] On Toeplitz graphs being line graphs
    Cheon, Gi-Sang
    Kang, Bumtle
    Kim, Suh-Ryung
    Mojallal, Seyed Ahmad
    Ryu, Homoon
    arXiv, 2022,
  • [2] On Planar Toeplitz Graphs
    Reinhardt Euler
    Tudor Zamfirescu
    Graphs and Combinatorics, 2013, 29 : 1311 - 1327
  • [3] On hamiltonian Toeplitz graphs
    Heuberger, C
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 107 - 125
  • [4] On Planar Toeplitz Graphs
    Euler, Reinhardt
    Zamfirescu, Tudor
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1311 - 1327
  • [5] Hamiltonian Connectedness of Toeplitz Graphs
    Nadeem, Muhammad Faisal
    Shabbir, Ayesha
    Zamfirescu, Tudor
    MATHEMATICS IN THE 21ST CENTURY, 2015, 98 : 135 - 149
  • [6] Bipartite finite Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 165 : 233 - 244
  • [7] Characterizing bipartite Toeplitz graphs
    Euler, R
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 47 - 58
  • [8] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296
  • [9] Structural properties of Toeplitz graphs
    Mojallal, Seyed Ahmad
    Jung, Ji-Hwan
    Cheon, Gi-Sang
    Kim, Suh-Ryung
    Kang, Bumtle
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [10] Hamiltonian properties of Toeplitz graphs
    vanDal, R
    Tijssen, G
    Tuza, Z
    vanderVeen, JAA
    Zamfirescu, C
    Zamfirescu, T
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 69 - 81