Reducing False Prediction On COVID-19 Detection Using Deep Learning

被引:1
|
作者
Bhowmik, Biswajit [1 ]
Varna, Shrinidhi Anil [1 ]
Kumar, Adarsh [1 ]
Kumar, Rahul [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Mangalore 575025, India
关键词
COVID-19; False Prediction; X-ray Images; Deep Neural Networks; Medical Imaging;
D O I
10.1109/MWSCAS47672.2021.9531825
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a custom deep neural network-based scheme for coronavirus disease 2019 (COVID-19) detection. The proposed method takes X-ray images that use transfer learning techniques on pre-trained models. One objective of this work is to quickening the detection of the virus. Another goal is to reduce the number of falsely detected cases by a significant margin. The experimental setup demonstrates promising results on the selected dataset, which achieve up to 99.74%, 99.69%, 98.80% as classification, precision, and recall accuracy.
引用
收藏
页码:404 / 407
页数:4
相关论文
共 50 条
  • [1] COVID-19 Automatic Detection Using Deep Learning
    Sanajalwe, Yousef
    Anbar, Mohammed
    Al-E'mari, Salam
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 39 (01): : 15 - 35
  • [2] Prediction and analysis of Covid-19 using the Deep Learning Models
    Indira V.
    Geetha R.
    Umarani S.
    Priyadarshini D.A.
    Research on Biomedical Engineering, 2024, 40 (01) : 183 - 197
  • [3] Deep Feature Extraction for Detection of COVID-19 Using Deep Learning
    Rafiq, Arisa
    Imran, Muhammad
    Alhajlah, Mousa
    Mahmood, Awais
    Karamat, Tehmina
    Haneef, Muhammad
    Alhajlah, Ashwaq
    ELECTRONICS, 2022, 11 (23)
  • [4] Deep-COVID: Detection and Analysis of COVID-19 Outcomes Using Deep Learning
    Khalil, Muhammad Ibrahim
    Rehman, Saif Ur
    Alhajlah, Mousa
    Mahmood, Awais
    Karamat, Tehmina
    Haneef, Muhammad
    Alhajlah, Ashwaq
    ELECTRONICS, 2022, 11 (22)
  • [5] Deep Learning Models for COVID-19 Detection
    Serte, Sertan
    Dirik, Mehmet Alp
    Al-Turjman, Fadi
    SUSTAINABILITY, 2022, 14 (10)
  • [6] Ensemble Deep Learning Approach with Attention Mechanism for COVID-19 Detection and Prediction
    Arya, Monika
    Motwani, Anand
    Sar, Sumit Kumar
    Choudhary, Chaitali
    AMBIENT INTELLIGENCE IN HEALTH CARE, ICAIHC 2022, 2023, 317 : 241 - 249
  • [7] Deep Learning for The Detection of COVID-19 Using Transfer Learning and Model Integration
    Wang, Ningwei
    Liu, Hongzhe
    Xu, Cheng
    PROCEEDINGS OF 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2020), 2020, : 281 - 284
  • [8] Intelligent Detection for CT Image of COVID-19 using Deep Learning
    Liu, Jingxin
    Zhang, Zhong
    Zu, Lihui
    Wang, Hairihan
    Zhong, Yutong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 76 - 81
  • [9] COVID-19 Pneumonia Detection Using Optimized Deep Learning Techniques
    Bashar, Abul
    Latif, Ghazanfar
    Ben Brahim, Ghassen
    Mohammad, Nazeeruddin
    Alghazo, Jaafar
    DIAGNOSTICS, 2021, 11 (11)
  • [10] Detection of COVID-19 Using Deep Learning Algorithms on Chest Radiographs
    Chiu, Wan Hang Keith
    Vardhanabhuti, Varut
    Poplavskiy, Dmytro
    Yu, Philip Leung Ho
    Du, Richard
    Yap, Alistair Yun Hee
    Zhang, Sailong
    Fong, Ambrose Ho-Tung
    Chin, Thomas Wing-Yan
    Lee, Jonan Chun Yin
    Leung, Siu Ting
    Lo, Christine Shing Yen
    Lui, Macy Mei-Sze
    Fang, Benjamin Xin Hao
    Ng, Ming-Yen
    Kuo, Michael D.
    JOURNAL OF THORACIC IMAGING, 2020, 35 (06) : 369 - 376