Necessary and sufficient conditions for the nonexistence of limit cycles of Leslie-Gower predator-prey models

被引:4
|
作者
Zhang Daoxiang [1 ,3 ]
Ping Yan [2 ,3 ]
机构
[1] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu 241002, Anhui, Peoples R China
[2] Zhejiang A&F Univ, Sch Sci, Hangzhou 311300, Zhejiang, Peoples R China
[3] Univ Helsinki, Dept Math & Stat, POB 68, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Leslie-Gower; Limit cycle; Geometric criterion; Dulac theorem; Predator-prey system; STOCHASTIC MODEL; SYSTEMS;
D O I
10.1016/j.aml.2017.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a predator-prey model with Leslie Gower functional response. We present the necessary and sufficient conditions for the nonexistence of limit cycles by the application of the generalized Dulac theorem. As a result, we give the necessary and sufficient conditions for which the local asymptotic stability of the positive equilibrium implies the global stability for this model. Our results extend and improve the results presented by Aghajani and Moradifam (2006) and Hsu and Huang (1995). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] A Lyapunov function for Leslie-Gower predator-prey models
    Korobeinikov, A
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 697 - 699
  • [2] THREE LIMIT CYCLES IN A LESLIE-GOWER PREDATOR-PREY MODEL WITH ADDITIVE ALLEE EFFECT
    Aguirre, Pablo
    Gonzalez-Olivares, Eduardo
    Saez, Eduardo
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 69 (05) : 1244 - 1262
  • [3] Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect
    Aguirrea, Pablo
    Gonzalez-Olivares, Eduardo
    Saez, Eduardo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1401 - 1416
  • [4] Periodic solutions of delayed Leslie-Gower predator-prey models
    Huo, HF
    Li, WT
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 155 (03) : 591 - 605
  • [5] A modified Leslie-Gower predator-prey model with prey infection
    Zhou X.
    Cui J.
    Shi X.
    Song X.
    Journal of Applied Mathematics and Computing, 2010, 33 (1-2) : 471 - 487
  • [6] On a Leslie-Gower predator-prey model incorporating a prey refuge
    Chen, Fengde
    Chen, Liujuan
    Xie, Xiangdong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2905 - 2908
  • [7] Effect of weak prey in Leslie-Gower predator-prey model
    Mohammadi, Hossein
    Mahzoon, Mojtaba
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 196 - 204
  • [8] PHASE PORTRAITS, HOPF BIFURCATIONS AND LIMIT CYCLES OF LESLIE-GOWER PREDATOR-PREY SYSTEMS WITH HARVESTING RATES
    Zhu, Changrong
    Lan, Kunquan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (01): : 289 - 306
  • [9] A LESLIE-GOWER PREDATOR-PREY MODEL WITH A FREE BOUNDARY
    Liu, Yunfeng
    Guo, Zhiming
    El Smaily, Mohammad
    Wang, Lin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (07): : 2063 - 2084
  • [10] BIFURCATIONS ANALYSIS OF LESLIE-GOWER PREDATOR-PREY MODELS WITH NONLINEAR PREDATOR-HARVESTING
    Zhu, Changrong
    Kong, Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1187 - 1206