Bifurcation Problems for a Class of Degenerate Quasilinear Elliptic Equations

被引:0
|
作者
Li, Yun-xiang [1 ,3 ]
Ye, Yu [2 ]
Xia, Fang-li [3 ]
机构
[1] Hunan City Univ, Dept Math, Yiyang 413049, Peoples R China
[2] Changsha Univ Sci & Technol, Dept Math, Changsha 410076, Hunan, Peoples R China
[3] Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Quasilinear elliptic equation; bifurcation; principal eigenvalue; EIGENVALUE PROBLEMS; INEQUALITIES;
D O I
10.1007/s10255-010-0006-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the bifurcation problem -divA(x, del u) = lambda a(x)vertical bar u vertical bar(p-2)u+ f(x,u,lambda) in Omega with p > 1. Under some proper assumptions on A(x,xi),a(x) and f(x,u,lambda), we show that the existence of an unbounded branch of positive solutions bifurcating from the principal eigenvalue of the problem -divA(x, del u) =lambda a(x)vertical bar u vertical bar(p-2)u.
引用
收藏
页码:395 / 404
页数:10
相关论文
共 50 条