On Optimal Locally Repairable Codes with Super-Linear Length

被引:0
|
作者
Cai, Han [1 ]
Miao, Ying [2 ]
Schwartz, Moshe [1 ]
Tang, Xiaohu [3 ]
机构
[1] Ben Gurion Univ Negev, Elect & Comp Engn, Beer Sheva, Israel
[2] Univ Tsukuba, Engn Informat & Syst, Tsukuba, Ibaraki, Japan
[3] Southwest Jiaotong Univ, Informat Sci & Technol, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/isit.2019.8849226
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal locally repairable codes with respect to the bound presented by Prakash et al. are considered. New upper bounds on the length of such optimal codes are derived. The new bounds both improve and generalize previously known bounds. Optimal codes are constructed, whose length is order optimal when compared with the new upper bounds. The length of the codes is super linear in the alphabet size.
引用
收藏
页码:2818 / 2822
页数:5
相关论文
共 50 条
  • [1] On Optimal Locally Repairable Codes With Super-Linear Length
    Cai, Han
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) : 4853 - 4868
  • [2] New Constructions of Optimal Locally Repairable Codes With Super-Linear Length
    Kong, Xiangliang
    Wang, Xin
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (10) : 6491 - 6506
  • [3] On the Maximal Code Length of Optimal Linear Locally Repairable Codes
    Hao, Jie
    Shum, Kenneth
    Xia, Shu-Tao
    Yang, Yi-Xian
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1326 - 1330
  • [4] Optimal Locally Repairable Linear Codes
    Song, Wentu
    Dau, Son Hoang
    Yuen, Chau
    Li, Tiffany Jing
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (05) : 1019 - 1036
  • [5] Optimal cyclic (r, δ) locally repairable codes with unbounded length
    Fang, Weijun
    Fu, Fang-Wei
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 63
  • [6] Optimal Cyclic (r, δ) Locally Repairable Codes with Unbounded Length
    Fang, Weijun
    Fu, Fang-Wei
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 265 - 269
  • [7] Optimal cyclic locally repairable codes with unbounded length from their zeros
    Tian, Fuyin
    Zhu, Shixin
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [8] Explicit optimal-length locally repairable codes of distance 5
    Beemer, Allison
    Coatney, Ryan
    Guruswami, Venkatesan
    Lopez, Hiram H.
    Pinero, Fernando
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 800 - 804
  • [9] On Optimal Quaternary Locally Repairable Codes
    Hao, Jie
    Shum, Kenneth W.
    Xia, Shu-Tao
    Fu, Fang-Wei
    Yang, Yixian
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 3267 - 3272
  • [10] Optimal Constacyclic Locally Repairable Codes
    Sun, Zhonghua
    Zhu, Shixin
    Wang, Liqi
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (02) : 206 - 209