In this paper, we will prove that all Batyrev Calabi-Yau threefolds, arising from a crepant resolution of a generic hyperplane section of a toric Fano-Gorenstein fourfold, have finite automorphism group. Together with the Morrison conjecture, this suggests that all Batyrev Calabi-Yau threefolds should have a polyhedral Kahler (ample) cone.
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, TaiwanHarvard Univ, Dept Math, Cambridge, MA 02138 USA
Gao, Peng
He, Yang-Hui
论文数: 0引用数: 0
h-index: 0
机构:
City Univ London, Dept Math, London EC1V 0HB, England
Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
Univ Oxford Merton Coll, Oxford OX1 4JD, EnglandHarvard Univ, Dept Math, Cambridge, MA 02138 USA
He, Yang-Hui
Yau, Shing-Tung
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USA
Natl Taiwan Univ, Taida Inst Math Sci, Taipei 10764, TaiwanHarvard Univ, Dept Math, Cambridge, MA 02138 USA