Statistical Topological Data Analysis using Persistence Landscapes

被引:0
|
作者
Bubenik, Peter [1 ]
机构
[1] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
关键词
topological data analysis; statistical topology; persistent homology; topological summary; persistence landscape;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define a new topological summary for data that we call the persistence landscape. Since this summary lies in a vector space, it is easy to combine with tools from statistics and machine learning, in contrast to the standard topological summaries. Viewed as a random variable with values in a Banach space, this summary obeys a strong law of large numbers and a central limit theorem. We show how a number of standard statistical tests can be used for statistical inference using this summary. We also prove that this summary is stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein distances.
引用
收藏
页码:77 / 102
页数:26
相关论文
共 50 条
  • [1] Topological microstructure analysis using persistence landscapes
    Dlotko, Pawel
    Wanner, Thomas
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 334 : 60 - 81
  • [2] Persistence codebooks for topological data analysis
    Zielinski, Bartosz
    Lipinski, Michal
    Juda, Mateusz
    Zeppelzauer, Matthias
    Dlotko, Pawel
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (03) : 1969 - 2009
  • [3] Persistence codebooks for topological data analysis
    Bartosz Zieliński
    Michał Lipiński
    Mateusz Juda
    Matthias Zeppelzauer
    Paweł Dłotko
    Artificial Intelligence Review, 2021, 54 : 1969 - 2009
  • [4] A persistence landscapes toolbox for topological statistics
    Bubenik, Peter
    Dlotko, Pawel
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 78 : 91 - 114
  • [5] A Riemannian Framework for Statistical Analysis of Topological Persistence Diagrams
    Anirudh, Rushil
    Venkataraman, Vinay
    Ramamurthy, Karthikeyan Natesan
    Turaga, Pavan
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1023 - 1031
  • [6] Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures
    Rieck, Bastian
    Mara, Hubert
    Leitte, Heike
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) : 2382 - 2391
  • [7] Persistence weighted Gaussian kernel for topological data analysis
    Kusano, Genki
    Fukumizu, Kenji
    Hiraoka, Yasuaki
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [8] Persistence Paths and Signature Features in Topological Data Analysis
    Chevyrev, Ilya
    Nanda, Vidit
    Oberhauser, Harald
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 192 - 202
  • [9] Persistence Bag-of-Words for Topological Data Analysis
    Zielinski, Bartosz
    Lipinski, Michal
    Juda, Mateusz
    Zeppelzauer, Matthias
    Dlotko, Pawel
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4489 - 4495
  • [10] PLLay: Efficient Topological Layer based on Persistence Landscapes
    Kim, Kwangho
    Kim, Jisu
    Zaheer, Manzil
    Kim, Joon Sik
    Chazal, Frederic
    Wasserman, Larry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33