An efficient hierarchical nanostructured Pr6O11 electrode for solid oxide fuel cells

被引:28
|
作者
Sharma, R. K. [1 ]
Djurado, E. [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, G INP, Inst Engn,LEPMI, F-38000 Grenoble, France
关键词
OXYGEN REDUCTION REACTION; THIN-FILM ELECTROLYTE; ELECTROCHEMICAL PERFORMANCE; TRANSPORT-PROPERTIES; CATHODE MATERIAL; SPRAY DEPOSITION; BOILING POINTS; SOFC CATHODES; IT-SOFC; IMPEDANCE;
D O I
10.1039/c8ta00190a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hierarchical nanostructured Pr6O11 phase, a potential electrocatalyst for the oxygen reduction reaction, is prepared for the first time by electrostatic spray deposition (ESD) on a GDC (Ce0.9Gd0.1O2 _ (delta)) electrolyte and evaluated as an Intermediate Temperature Solid Oxide Fuel Cell cathode. Different and innovative microstructures are found to be related to the solvent composition, deposition time, nozzle to substrate distance, substrate temperature and solution flow rate. Single phase Pr6O11 films crystallize in a Fm (3) over barm fluorite cubic structure after calcination at 700 degrees C for 2 h in air. The electrochemical properties are found to be strongly dependent on the microstructure of the cathode films. A symmetrical cell based on the double layer architecture (a columnar-type active layer by ESD topped by a screen-printed current collector) cathode presents a low polarization resistance value of 0.02 Omega cm(2) at 600 degrees C. To the best of our knowledge, this Pr6O11 cathode shows the best performance reported to date for all SOFC cathode materials. A single cell made of a commercial (Ni-3YSZ/Ni-8YSZ/8YSZ/GDC) half cell and this double layer cathode delivers a maximum power density of 500 mW cm(-2) at 700 degrees C. Moreover, Pr6O11 does not show any reactivity with GDC over 10 days in air at 800 degrees C.
引用
收藏
页码:10787 / 10802
页数:16
相关论文
共 50 条
  • [1] Highly efficient architectured Pr6O11 oxygen electrode for solid oxide fuel cell
    Sharma, Rakesh K.
    Khamidy, Nur I.
    Rapenne, Laetitia
    Chariot, Frederic
    Moussaoui, Hamza
    Laurencin, Jerome
    Djurado, Elisabeth
    JOURNAL OF POWER SOURCES, 2019, 419 : 171 - 180
  • [2] Bi doped Pr6O11 as fluorite oxide cathode for all-fluorite solid oxide fuel cells
    Ishihara, Tatsumi
    Xie, Jing
    Shin, Tae Ho
    Ju, Young-Wan
    Ida, Shintaro
    Kilner, John A.
    JOURNAL OF POWER SOURCES, 2015, 275 : 167 - 174
  • [3] One-pot synthesis Pr6O11 decorated Pr2CuO4 composite cathode for solid oxide fuel cells
    Zhao Shijie
    Li Na
    Sun Liping
    Li Qiang
    Huo Lihua
    Zhao Hui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6227 - 6236
  • [4] Characteristics of an HC sensor using a Pr6O11 electrode
    Inaba, T
    Saji, K
    Sakata, J
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 108 (1-2): : 374 - 378
  • [5] Effect of Pr6O11 addition on the electrical properties of Sm0.2Ce0.8O1.9 electrolyte materials for solid oxide fuel cells
    Cheng, Jihai
    Zhu, Xuhang
    Zhang, Wenyi
    Hou, Yifeng
    FUNCTIONAL MATERIALS LETTERS, 2025, 18 (01)
  • [6] Novel Pr6O11 varistor
    Li Tong-ye
    Wang Yu
    Dong Liang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2007, 14 : 42 - 46
  • [7] Synthesis and characterization of Pr6O11 and Ag/Pr6O11 nanorods and their photocatalytic activity toward dye degradation
    Zhang Pei
    Niu Tongjun
    Zheng Gang
    Liu Lin
    Deng Jiatao
    Jin Yong
    Jiao Zhifeng
    Sun Xiaosong
    MATERIALS LETTERS, 2017, 203 : 54 - 57
  • [8] An SOFC Cathode Infiltrated with Pr6O11
    Chiba, R.
    Aono, H.
    Kato, K.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 1831 - 1840
  • [9] MAGNETIC AND TRANSPORT PROPERTIES OF PR6O11
    LAL, HB
    VERMA, BK
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1977, 15 (06) : 400 - 404
  • [10] An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone
    Nicollet, Clement
    Flura, Aurelien
    Vibhu, Vaibhav
    Rougier, Aline
    Bassat, Jean-Marc
    Grenier, Jean-Claude
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (34) : 15538 - 15544