α-Fe2O3/AmTiO2 heterojunction-based photoanode with improved interfacial charge transport properties for enhanced photoelectrochemical water splitting

被引:7
|
作者
Ramachandran, K. [1 ]
Geerthana, M. [1 ]
Maadeswaran, P. [2 ]
Navaneethan, M. [3 ]
Harish, S. [4 ]
Ramesh, R. [1 ]
机构
[1] Periyar Univ, Dept Phys, Salem 636011, Tamil Nadu, India
[2] Periyar Univ, Dept Energy Sci & Technol, Salem 636011, Tamil Nadu, India
[3] SRM Inst Sci & Technol, Nanotechnol Res Ctr, Kanchepuram, Tamil Nadu, India
[4] Shizuoka Univ, Res Inst Elect, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328011, Japan
关键词
HYDROGEN-PRODUCTION; HEMATITE; TIO2; ELECTRODEPOSITION; NANOSTRUCTURES; OXIDATION; FILMS; TIN;
D O I
10.1007/s10854-021-06050-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To improve the photoelectrochemical water-splitting performance of the alpha-Fe2O3 photoanode, in this work, we synthesized the alpha-Fe2O3/AmTiO2 (Am = Amorphous) heterojunction on fluorine-doped tin oxide substrate with improved charge transport properties. Two different compositions of alpha-Fe2O3/ AmTiO2 heterojunctions were synthesized by varying the titanium precursor and were named as a-Fe2O3/AmTiO2-1 and alpha-Fe2O3/AmTiO2-2. The crystal structure, morphology, and optical properties were studied using different characterization techniques. Compared with the alpha-Fe2O3 nanostructure, the formation of alpha-Fe2O3/AmTiO2-2 heterojunction increases the photocurrent density at 1.23 V vs RHE in threefold. It is observed that amorphous TiO2 could offer high electrical conductivity with enhanced charge transport properties along with a minimum of photoexcited charge carrier's recombination rates and, thus, enhances the water-splitting performance under the simulated solar illumination. The results demonstrate the new way for the preparation of alpha-Fe2O3/ AmTiO2 heterojunction towards efficient water-splitting application.
引用
收藏
页码:8318 / 8326
页数:9
相关论文
共 50 条
  • [1] α-Fe2O3/AmTiO2 heterojunction-based photoanode with improved interfacial charge transport properties for enhanced photoelectrochemical water splitting
    K. Ramachandran
    M. Geerthana
    P. Maadeswaran
    M. Navaneethan
    S. Harish
    R. Ramesh
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 8318 - 8326
  • [2] Hydrothermal synthesis of Fe2O3/ZnO heterojunction photoanode for photoelectrochemical water splitting
    Chen, Chao
    Bai, Hongye
    Da, Zulin
    Li, Meng
    Yan, Xu
    Jiang, Jinhui
    Fan, Weiqiang
    Shi, Weidong
    FUNCTIONAL MATERIALS LETTERS, 2015, 8 (05)
  • [3] Fabrication of Fe2O3/TiO2 Photoanode for Improved Photoelectrochemical Water Splitting
    Oh, Hyo-Jin
    Noh, Kyung-Jong
    Kim, Bo-Ra
    Kang, Wooseung
    Jung, Sang-Chul
    Kim, Sun-Jae
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (01)
  • [4] Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation
    Deng, Jiujun
    Zhuo, Qiqi
    Lv, Xiaoxin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 835 : 287 - 292
  • [5] Enhanced photoelectrochemical properties of α-Fe2O3 nanoarrays for water splitting
    Yu, Lianqing
    Zhang, Yaping
    He, Jiandong
    Zhu, Haifeng
    Zhou, Xiaoyan
    Li, Ming
    Yang, Qianlong
    Xu, Fei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 753 : 601 - 606
  • [6] A novel ternary nanostructured carbonaceous-metal-semiconductor eRGO/NiO/α-Fe2O3 heterojunction photoanode with enhanced charge transfer properties for photoelectrochemical water splitting
    Phuan, Yi Wen
    Chong, Meng Nan
    Ocon, Joey D.
    Chan, Eng Seng
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 169 : 236 - 244
  • [7] Design and application of hierarchical α-Fe2O3/In2O3 heterojunction photoanode for enhanced photoelectrochemical water oxidation
    Zhou, Yanhong
    Sun, Ruihong
    Li, Huixin
    Liu, Xiaoyuan
    Song, Caixia
    Wang, Debao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 83 : 236 - 245
  • [8] α-Fe2O3/Ti-Nb-Zr-O composite photoanode for enhanced photoelectrochemical water splitting
    Liu, Qiang
    Ding, Dongyan
    Ning, Congqin
    Wang, Xuewu
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2015, 196 : 15 - 22
  • [9] Optimizing Charge Separation and Transport: Enhanced Photoelectrochemical Water Splitting in α-Fe2O3/CZTS Nanorod Arrays
    Chen, Wen
    She, Ao-Sheng
    Ji, Ming-Hao
    Shi, Hao-Yan
    Yang, Yang
    Pu, Yi-Hu
    Chen, Rui
    Yang, Wei-Hua
    Chen, Yan-Xin
    Lu, Can-Zhong
    CATALYSTS, 2024, 14 (11)
  • [10] Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting
    Kyesmen, Pannan, I
    Nombona, Nolwazi
    Diale, Mmantsae
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 863