Braces, radical rings, and the quantum Yang-Baxter equation

被引:283
|
作者
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Zahlentheorie, D-70550 Stuttgart, Germany
关键词
quantum Yang-Baxter equation; set-theoretical solution; radical ring; cycle set; brace; square-free;
D O I
10.1016/j.jalgebra.2006.03.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Non-degenerate cycle sets are equivalent to non-degenerate unitary set-theoretical solutions of the quantum Yang-Baxter equation. We embed such cycle sets into generalized radical rings (braces) and study their interaction in this context. We establish a Galois theory between ideals of braces and quotient cycle sets. Our main result determines the relationship between two square-free cycle sets operating transitively on each other. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
  • [1] LEFT BRACES AND THE QUANTUM YANG-BAXTER EQUATION
    Meng, H.
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (02) : 595 - 608
  • [2] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [3] ON ENGEL GROUPS, NILPOTENT GROUPS, RINGS, BRACES AND THE YANG-BAXTER EQUATION
    Smoktunowicz, Agata
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (09) : 6535 - 6564
  • [4] Skew left braces and the Yang-Baxter equation
    Childs, Lindsay N.
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 649 - 655
  • [5] Left Braces: Solutions of the Yang-Baxter Equation
    Cedo, Ferran
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2018, 5 : 33 - 90
  • [6] On the Yang-Baxter equation and left nilpotent left braces
    Cedo, Ferran
    Gateva-Ivanova, Tatiana
    Smoktunowicz, Agata
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (04) : 751 - 756
  • [7] Inverse semi-braces and the Yang-Baxter equation
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    JOURNAL OF ALGEBRA, 2021, 573 : 576 - 619
  • [8] Involution semi-braces and the Yang-Baxter equation
    Miccoli, Maria Maddalena
    NOTE DI MATEMATICA, 2022, 42 (02): : 63 - 73
  • [9] Almost semi-braces and the Yang-Baxter equation
    Miccoli, Maria Maddalena
    NOTE DI MATEMATICA, 2018, 38 (01): : 83 - 88
  • [10] Quantum Yang-Baxter Equation, Braided Semigroups, and Dynamical Yang-Baxter Maps
    Matsumoto, Diogo Kendy
    Shibukawa, Youichi
    TOKYO JOURNAL OF MATHEMATICS, 2015, 38 (01) : 227 - 237