Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals

被引:0
|
作者
Han, Ruidong [1 ]
Wang, Xinghui [1 ]
Hu, Shuhe [2 ]
机构
[1] Anhui Univ, Sch Econ, 111 Jiulong Rd, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
来源
STATISTICAL METHODS AND APPLICATIONS | 2018年 / 27卷 / 03期
基金
中国国家自然科学基金;
关键词
Weighted least squares estimation; Empirical likelihood; Interval estimation; Autoregressive models; PARTIAL LINEAR-MODELS; EMPIRICAL LIKELIHOOD; TIME-SERIES; INFERENCE; REGIONS;
D O I
10.1007/s10260-017-0406-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the first-order autoregressive model, we establish the asymptotic theory of the weighted least squares estimations whether the underlying autoregressive process is stationary, unit root, near integrated or even explosive under a weaker moment condition of innovations. The asymptotic limit of this estimator is always normal. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. An empirical likelihood confidence interval is proposed for interval estimations of the autoregressive coefficient. The results improve the corresponding ones of Chan et al. (Econ Theory 28:705-717, 2012). Some simulations are conducted to illustrate the proposed method.
引用
收藏
页码:479 / 490
页数:12
相关论文
共 50 条