The Method for Ranking Quasi-Optimal Alternatives in Interval Game Models Against Nature

被引:0
|
作者
Romanenkov, Yuri [1 ]
Kosenko, Viktor [2 ]
Lobach, Olena [3 ]
Grinchenko, Evgen [4 ]
Grinchenko, Marina [3 ]
机构
[1] N Ye Zhukovsky Natl Aerosp Univ, Kharkiv Aviat Inst, Chkalov 17, UA-61070 Kharkov, Ukraine
[2] State Enterprise Kharkiv Res Inst Mech Engn, Krivokonevskaya 30, UA-61016 Kharkiv, Ukraine
[3] Natl Tech Univ, Kharkiv Polytech Inst, Kyrpychova 2, UA-61002 Kharkiv, Ukraine
[4] Kharkiv Natl Univ Internal Affairs, L Landau Ave 27, UA-61080 Kharkiv, Ukraine
关键词
Playing Against Nature; Optimal Strategy; Interval Data;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of selecting the optimal strategy in the interval game with nature is considered; in particular, the situation when in the interactive dialogue of an analyst and decision support system there are cases of objective ambiguity caused, on the one hand, by interval uncertainty of data, and on the other hand by the chosen model of the task formalization. The method for ranking quasi-optimal alternatives in interval game models against nature is proposed, which enables comparing interval alternatives in cases of classical interval ambiguity. In this case, the function of the analyst preferences is used with respect to the values of the criterion that help determine the indicators for the quantitative ranking of alternatives. By selecting a specific type of the preference function, the researcher artificially converts the primary uncertainty of the data into the uncertainty of the preference function form, which nevertheless enables avoiding the ambiguity in the "fuzzy" areas of quasi-optimal alternatives.
引用
收藏
页码:334 / 343
页数:10
相关论文
共 50 条
  • [1] Quasi-optimal Permutation Ranking and Applications to PERK
    Bettaieb, Slim
    Budroni, Alessandro
    Palumbi, Marco
    Gazzoni Filho, Decio Luiz
    PROGRESS IN CRYPTOLOGY, AFRICACRYPT 2024, 2024, 14861 : 49 - 65
  • [2] Method of Quasi-Optimal Synthesis Using Invariants
    Kostoglotov, Andrey Aleksandrovich
    Lazarenko, Sergey Valerievich
    Kuznetcov, Anton Aleksandrovich
    Lyashchenko, Zoya Vladimirovna
    2016 3RD INTERNATIONAL CONFERENCE ON MECHANICS AND MECHATRONICS RESEARCH (ICMMR 2016), 2016, 77
  • [3] NONLINEAR FILTRATION AND QUASI-OPTIMAL NATURE OF AUTOMATIC PHASE CONTROL
    TIKHONOV, VI
    ENGINEERING CYBERNETICS, 1965, (02): : 81 - &
  • [4] A QUASI-OPTIMAL METHOD FOR SYNTHESIS OF A NETWORK OF RECTIFYING COLUMNS
    WROBEL, J
    GAWDZIK, A
    COMPUTERS & CHEMICAL ENGINEERING, 1994, 18 (01) : 45 - 53
  • [5] QUASI-OPTIMAL SYNTHESIS FOR ANTIREFLECTION COATINGS - A NEW METHOD
    TIKHONRAVOV, AV
    DOBROWOLSKI, JA
    APPLIED OPTICS, 1993, 32 (22) : 4265 - 4275
  • [6] QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE BOUNDARY ELEMENT METHOD
    Feischl, M.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1327 - 1348
  • [7] QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD
    Bonito, Andrea
    Nochetto, Ricardo H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) : 734 - 771
  • [8] Method And Mathematical Algorithm For Finding The Quasi-Optimal Purpose Plan
    Piskunov, Stanislav
    Yuriy, Rayisa
    Shabelnyk, Tetiana
    Kozyr, Anton
    Bashynskyi, Kyrylo
    Kovalev, Leonid
    Piskunov, Mykola
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (02): : 88 - 92
  • [9] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [10] A New Method for Quasi-Optimal Design of Water Distribution Networks
    Akbar Shirzad
    Massoud Tabesh
    Moharram Heidarzadeh
    Water Resources Management, 2015, 29 : 5295 - 5308