Adaptive evolution in the SRZ chemoreceptor families of Caenorhabditis elegans and Caenorhabditis briggsae

被引:45
|
作者
Thomas, JH
Kelley, JL
Robertson, HM
Ly, K
Swanson, WJ
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA
关键词
positive selection; ligand binding; maximum likelihood; synonymous; nonsynonymous;
D O I
10.1073/pnas.0406469102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigated the possibility of positive selection acting on members of the putative seven-pass chemoreceptor superfamily in Caenorhabditis elegans, which comprises approximate to 1,300 genes encoding seven-pass G protein-coupled receptors (GPCRs). Using a maximum-likelihood approach, we conducted statistical tests for evidence of codon sites where the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (d(N)/d(s)) was >1. Evidence for positive selection was found only for the srz family, about which virtually nothing specific is known. We extended the annotation of the srz gene family, establishing gene models for 60 srz genes in C elegans and 28 srz genes in Caenorhabditis briggsae. d(N)/d(s) ratios varied dramatically in different regions of the SRZ proteins, peaking in predicted extracellular regions. These regions included 23 sites where evidence of positive selection was highly significant, corresponding remarkably well with regions implicated in ligand binding in other GPCR family members. We interpret these results as indicating that the srz family is under positive selection, probably driven by ligand binding.
引用
收藏
页码:4476 / 4481
页数:6
相关论文
共 50 条
  • [1] IDENTIFICATION OF CAENORHABDITIS-BRIGGSAE AND CAENORHABDITIS-ELEGANS
    FRIEDMAN, PA
    PLATZER, EG
    JOURNAL OF NEMATOLOGY, 1976, 8 (04) : 285 - 285
  • [2] Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss
    Robertson, HM
    GENOME RESEARCH, 1998, 8 (05) : 449 - 463
  • [3] Neutral Evolution of Ten Types of mariner Transposons in the Genomes of Caenorhabditis elegans and Caenorhabditis briggsae
    David J. Witherspoon
    Hugh M. Robertson
    Journal of Molecular Evolution, 2003, 56 : 751 - 769
  • [4] Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae
    Witherspoon, DJ
    Robertson, HM
    JOURNAL OF MOLECULAR EVOLUTION, 2003, 56 (06) : 751 - 769
  • [5] SPECIES DIFFERENTIATION IN CAENORHABDITIS-BRIGGSAE AND CAENORHABDITIS-ELEGANS
    FRIEDMAN, PA
    PLATZER, EG
    EBY, JE
    JOURNAL OF NEMATOLOGY, 1977, 9 (03) : 197 - 203
  • [6] Temperature, stress and spontaneous mutation in Caenorhabditis briggsae and Caenorhabditis elegans
    Matsuba, Chikako
    Ostrow, Dejerianne G.
    Salomon, Matthew P.
    Tolani, Amit
    Baer, Charles F.
    BIOLOGY LETTERS, 2013, 9 (01)
  • [7] Four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae
    Culetto, E
    Grauso, M
    Combes, D
    Fedon, Y
    Romani, R
    Toutant, JP
    Arpagaus, M
    STRUCTURE AND FUNCTION OF CHOLINESTERASES AND RELATED PROTEINS, 1998, : 87 - 92
  • [8] The Caenorhabditis chemoreceptor gene families
    James H Thomas
    Hugh M Robertson
    BMC Biology, 6
  • [9] Formation and function of dauer ascarosides in the nematodes Caenorhabditis briggsae and Caenorhabditis elegans
    Cohen, Sarah M.
    Wrobel, Chester J. J.
    Prakash, Sharan J.
    Schroeder, Frank C.
    Sternberg, Paul W.
    G3-GENES GENOMES GENETICS, 2022, 12 (03):
  • [10] Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae
    Grauso, M
    Culetto, E
    Combes, D
    Fedon, Y
    Toutant, JP
    Arpagaus, M
    FEBS LETTERS, 1998, 424 (03) : 279 - 284