Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws

被引:116
|
作者
Solis-Perez, J. E. [1 ]
Gomez-Aguilar, J. F. [2 ]
Atangana, A. [3 ]
机构
[1] Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Tecnol Nacl Mexico, CONACyT, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
关键词
Variable-order fractional derivatives; Atangana-Toufik numerical scheme; Financial system; Memcapacitor-based circuit; MODEL; DIFFUSION; SYSTEM; DERIVATIVES; KERNEL;
D O I
10.1016/j.chaos.2018.06.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Variable-order differential operators can be employed as a powerful tool to modeling nonlinear fractional differential equations and chaotical systems. In this paper, we propose a new generalize numerical schemes for simulating variable-order fractional differential operators with power-law, exponential-law and Mittag-Leffler kernel. The numerical schemes are based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation. These schemes were applied to simulate the chaotic financial system and memcapacitor-based circuit chaotic oscillator. Numerical examples are presented to show the applicability and efficiency of this novel method. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [1] A NOVEL NUMERICAL METHOD FOR SOLVING FUZZY VARIABLE-ORDER DIFFERENTIAL EQUATIONS WITH MITTAG-LEFFLER KERNELS
    Jafari, Hossein
    Ganji, Roghayeh Moallem
    Ganji, Davood Domiri
    Hammouch, Zakia
    Gasimov, Yusif S. S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [2] Variable-order fractal-fractional time delay equations with power, exponential and Mittag-Leffler laws and their numerical solutions
    Solis-Perez, J. E.
    Gomez-Aguilar, J. F.
    ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 555 - 577
  • [3] Variable-order fractal-fractional time delay equations with power, exponential and Mittag-Leffler laws and their numerical solutions
    J. E. Solís-Pérez
    J. F. Gómez-Aguilar
    Engineering with Computers, 2022, 38 : 555 - 577
  • [4] Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks
    Zuniga-Aguilar, C. J.
    Romero-Ugalde, H. M.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Valtierra-Rodriguez, M.
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 382 - 403
  • [5] A NOVEL PREDICTOR-CORRECTOR SCHEME FOR SOLVING VARIABLE-ORDER FRACTIONAL DELAY DIFFERENTIAL EQUATIONS INVOLVING OPERATORS WITH MITTAG-LEFFLER KERNEL
    Coronel-Escamilla, Antonio
    Francisco Gomez-Aguilar, Jose
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 561 - 574
  • [6] Numerical solution of fractal-fractional Mittag-Leffler differential equations with variable-order using artificial neural networks
    Zuniga-Aguilar, C. J.
    Gomez-Aguilar, J. F.
    Romero-Ugalde, H. M.
    Escobar-Jimenez, R. F.
    Fernandez-Anaya, G.
    Alsaadi, Fawaz E.
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2669 - 2682
  • [7] Correction to: A predator–prey model involving variable-order fractional differential equations with Mittag-Leffler kernel
    Aziz Khan
    Hashim M. Alshehri
    J. F. Gómez-Aguilar
    Zareen A. Khan
    G. Fernández-Anaya
    Advances in Difference Equations, 2021
  • [8] A predator-prey model involving variable-order fractional differential equations with Mittag-Leffler kernel
    Khan, Aziz
    Alshehri, Hashim M.
    Gomez-Aguilar, J. F.
    Khan, Zareen A.
    Fernandez-Anaya, G.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [9] MITTAG-LEFFLER STABILITY OF IMPULSIVE DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
    Stamova, Ivanka M.
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (03) : 525 - 535
  • [10] Efficient Mittag-Leffler Collocation Method for Solving Linear and Nonlinear Fractional Differential Equations
    Saad Zagloul Rida
    Hussien Shafei Hussien
    Mediterranean Journal of Mathematics, 2018, 15