Fifty Year Trends in Global Ocean Heat Content Traced to Surface Heat Fluxes in the Sub-Polar Ocean

被引:14
|
作者
Sohail, Taimoor [1 ]
Irving, Damien B. [2 ]
Zika, Jan D. [1 ]
Holmes, Ryan M. [1 ,2 ,3 ]
Church, John A. [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[2] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[3] Univ New South Wales, ARC Ctr Excellence Climate Extremes, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
climate change; climate modeling; model bias; ocean heat uptake; ocean mixing; surface heat flux; CIRCULATION; TEMPERATURE; TRANSPORT;
D O I
10.1029/2020GL091439
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The ocean has absorbed approximately 90% of the accumulated heat in the climate system since 1970. As global warming accelerates, understanding ocean heat content changes and tracing these to surface heat input is increasingly important. We introduce a novel framework by organizing the ocean into temperature-percentiles from warmest to coldest, allowing us to trace ocean temperature changes to changes in surface fluxes and mixing. Applying this framework to observations and historical CMIP6 simulations, we find that 50 +/- 6% of surface heat uptake between 1970 and 2014 is confined to isotherms in the coldest 90% of the ocean volume. These isotherms outcrop over only 23% of the ocean's surface area in the sub-polar regions, implying a disproportionately large heat input per unit area. Additionally, a cooling bias in the CMIP6 models is traced to inaccurate sea surface temperatures and surface heat fluxes into the warmest 5%-20% of the ocean volume.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Spatial distribution of air-sea heat fluxes over the sub-polar North Atlantic Ocean
    Moore, G. W. K.
    Renfrew, I. A.
    Pickart, R. S.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [2] An estimate of global ocean circulation and heat fluxes
    Macdonald, AM
    Wunsch, C
    NATURE, 1996, 382 (6590) : 436 - 439
  • [3] Estimate of global ocean circulation and heat fluxes
    Macdonald, A.M.
    Wunsch, C.
    Nature, 1996, 382 (6590):
  • [4] Global ocean heat content in the Last Interglacial
    Shackleton, S.
    Baggenstos, D.
    Menking, J. A.
    Dyonisius, M. N.
    Bereiter, B.
    Bauska, T. K.
    Rhodes, R. H.
    Brook, E. J.
    Petrenko, V. V.
    McConnell, J. R.
    Kellerhals, T.
    Haberli, M.
    Schmitt, J.
    Fischer, H.
    Severinghaus, J. P.
    NATURE GEOSCIENCE, 2020, 13 (01) : 77 - 81
  • [5] Global ocean heat content in the Last Interglacial
    S. Shackleton
    D. Baggenstos
    J. A. Menking
    M. N. Dyonisius
    B. Bereiter
    T. K. Bauska
    R. H. Rhodes
    E. J. Brook
    V. V. Petrenko
    J. R. McConnell
    T. Kellerhals
    M. Häberli
    J. Schmitt
    H. Fischer
    J. P. Severinghaus
    Nature Geoscience, 2020, 13 : 77 - 81
  • [6] Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer
    Sirevaag, A.
    de la Rosa, S.
    Fer, I.
    Nicolaus, M.
    Tjernstroem, M.
    McPhee, M. G.
    OCEAN SCIENCE, 2011, 7 (03) : 335 - 349
  • [7] DETERMINATION OF OCEAN SURFACE HEAT FLUXES BY A VARIATIONAL METHOD
    ROQUET, H
    PLANTON, S
    GASPAR, P
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1993, 98 (C6) : 10211 - 10221
  • [8] Global ocean surface heat fluxes derived from the maximum entropy production framework accounting for ocean heat storage and Bowen ratio adjustments
    Yang, Yong
    Sun, Huaiwei
    Wang, Jingfeng
    Zhang, Wenxin
    Zhao, Gang
    Wang, Weiguang
    Cheng, Lei
    Chen, Lu
    Qin, Hui
    Cai, Zhanzhang
    EARTH SYSTEM SCIENCE DATA, 2025, 17 (03) : 1191 - 1216
  • [9] Global upper ocean heat content and climate variability
    Peter C. Chu
    Ocean Dynamics, 2011, 61 : 1189 - 1204
  • [10] Comparison of retrospective analyses of the global ocean heat content
    Chepurin, GA
    Carton, JA
    DYNAMICS OF ATMOSPHERES AND OCEANS, 1999, 29 (2-4) : 119 - 145