Integer and fractional packings in dense 3-uniform hypergraphs

被引:11
|
作者
Haxell, P [1 ]
Nagle, B
Rödl, V
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
integer and fractional packings; regularity lemma for hypergraphs;
D O I
10.1002/rsa.10075
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let J(o) be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph H we define v(jo)(H) to be the maximum size of a set of pairwise triple-disjoint copies of j(o) in H. We say a function psi from the set of copies of j(o) in X to [0, 1] is a fractional J(o)-packing of H if Sigma(gis an element ofe) psi(j) less than or equal to 1 for every triple e of H. Then v(jo)*(H) is defined to be the maximum value of Sigma(gis an element of)((H)(jo)) psi(J) over all fractional J(o)-packings psi of H. We show that v(Jo)*(H) - v(Jo)(H) = o(\V(H)\(3) for all 3-uniform hypergraphs H. This extends the analogous result for graphs, proved by Haxell and Rodl (2001), and requires a significant amount of new theory about regularity of 3-uniform hypergraphs. In particular, we prove a result that we call the Extension Theorem. This states that if a k-partite 3-uniform hypergraph is regular [in the sense of the hypergraph regularity lemma of Frankl and Rbdl (2002)], then almostevery triple is in about the same number of copies of K (3) (the complete 3-uniform hypergraph with k vertices). (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:248 / 310
页数:63
相关论文
共 50 条
  • [1] Integer and fractional packings of hypergraphs
    Roedl, V.
    Schacht, M.
    Siggers, M. H.
    Tokushige, N.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (02) : 245 - 268
  • [2] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [3] Dense 3-uniform hypergraphs containing a large clique
    Wu, Biao
    Peng, Yuejian
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (03) : 577 - 592
  • [4] Dense 3-uniform hypergraphs containing a large clique
    Biao Wu
    Yuejian Peng
    Science China(Mathematics), 2018, 61 (03) : 577 - 592
  • [5] Dense 3-uniform hypergraphs containing a large clique
    Biao Wu
    Yuejian Peng
    Science China Mathematics, 2018, 61 : 577 - 592
  • [6] Prime 3-Uniform Hypergraphs
    Boussairi, Abderrahim
    Chergui, Brahim
    Ille, Pierre
    Zaidi, Mohamed
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2737 - 2760
  • [7] Prime 3-Uniform Hypergraphs
    Abderrahim Boussaïri
    Brahim Chergui
    Pierre Ille
    Mohamed Zaidi
    Graphs and Combinatorics, 2021, 37 : 2737 - 2760
  • [8] Matchings in 3-uniform hypergraphs
    Kuehn, Daniela
    Osthus, Deryk
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (02) : 291 - 305
  • [9] Partitioning 3-uniform hypergraphs
    Ma, Jie
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (01) : 212 - 232
  • [10] Wickets in 3-uniform hypergraphs
    Solymosi, Jozsef
    DISCRETE MATHEMATICS, 2024, 347 (06)