Hydrogen production automatic control in continuous microbial electrolysis cells reactors used in wastewater treatment

被引:12
|
作者
Alcaraz-Gonzalez, Victor [1 ]
Rodriguez-Valenzuela, Guillermo [1 ]
Jose Gomez-Martinez, Juan [1 ]
Luiz Dotto, Guilherme [2 ]
Alejandro Flores-Estrella, Rene [3 ]
机构
[1] Univ Guadalajara CUCEI, M Garcia Barragan 1451, Guadalajara 44430, Jalisco, Mexico
[2] Univ Fed Santa Maria, Av Roraima 1000, Santa Maria, RS, Brazil
[3] ITESO, Perifer Sur M Gomez Morin 8585, Tlaquepaque 45604, Mexico
关键词
Modeling; Microbial electrolysis cell; Control; Bio-hydrogen; Wastewater treatment;
D O I
10.1016/j.jenvman.2020.111869
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, two control laws are proposed and applied in a model for a continuous Microbial Electrochemical Cells system. The used model is based on mass balances describing the behavior of substrate consumption, microbial growth, competition between anodophilic and methanogenic microorganisms for the carbon source in the anode, hydrogen generation, and electrical current production. The main control objective is to improve the electrical current generated and thus the production of bio-hydrogen gas in the reactor, using the dilution rate and the applied potential as individual control input variables. The control laws implemented are nonlinear adaptive type. In order to demonstrate its usefulness, numerical simulation runs involving multiple set-point changes and input perturbations were conducted for each control variable. The results of these simulations show that both control laws were able to respond adequately and efficiently to the disturbances and reach the reference value to which they were subjected. Moreover, it is possible to control both the electrical current produced and the hydrogen produced. Finally, these simulations also show that the highest rate of hydrogen production can be obtained using the applied potential as a control input, but such productivity is only attainable for a short period of time.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Treatment of recalcitrant wastewater and hydrogen production via microbial electrolysis cells
    Shen, Ruixia
    Zhao, Lixin
    Lu, Jianwen
    Watson, Jamison
    Si, Buchun
    Chen, Xi
    Meng, Haibo
    Yao, Zonglu
    Feng, Jing
    Liu, Zhidan
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2019, 12 (05) : 179 - 189
  • [2] Hydrogen Production and Wastewater Treatment in a Microbial Electrolysis Cell with a Biocathode
    Xu, Yuan
    Jiang, Yangyue
    Chen, Yingwen
    Zhu, Shemin
    Shen, Shubao
    WATER ENVIRONMENT RESEARCH, 2014, 86 (07) : 649 - 653
  • [3] Avenues to the financial viability of microbial electrolysis cells [MEC] for domestic wastewater treatment and hydrogen production
    Aiken, Daniel C.
    Curtis, Thomas P.
    Heidrich, Elizabeth S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (05) : 2426 - 2434
  • [4] Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia
    Khan, M. Z.
    Nizami, A. S.
    Rehan, M.
    Ouda, O. K. M.
    Sultana, S.
    Ismail, I. M.
    Shahzad, K.
    APPLIED ENERGY, 2017, 185 : 410 - 420
  • [5] Hydrogen Production by Microbial Electrolysis Cells
    Guo Kun
    Zhang Jingjing
    Li Haoran
    Du Zhuwei
    PROGRESS IN CHEMISTRY, 2010, 22 (04) : 748 - 753
  • [6] Microbial electrolysis cells for hydrogen production
    Xiang, Li-juan
    Dai, Ling
    Guo, Ke-xin
    Wen, Zhen-hai
    Ci, Su-qin
    Li, Jing-hong
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2020, 33 (03) : 263 - 284
  • [7] Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater
    Watson, Valerie J.
    Hatzell, Marta
    Logan, Bruce E.
    BIORESOURCE TECHNOLOGY, 2015, 195 : 51 - 56
  • [8] Hydrogen and methane production from swine wastewater using microbial electrolysis cells
    Wagner, Rachel C.
    Regan, John M.
    Oh, Sang-Eun
    Zuo, Yi
    Logan, Bruce E.
    WATER RESEARCH, 2009, 43 (05) : 1480 - 1488
  • [9] Simultaneous treatment of PTA wastewater and production of hydrogen using microbial electrolysis cell
    Xu, Yuan
    Wang, Liyong
    Jiang, Yangyue
    Chen, Yingwen
    Zhu, Shemin
    Shen, Shubao
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2014, 35 (04): : 716 - 720
  • [10] Biorefinery perspectives of microbial electrolysis cells (MECs) for hydrogen and valuable chemicals production through wastewater treatment
    Kadier, Abudukeremu
    Jain, Pratiksha
    Lai, Bin
    Kalil, Mohd Sahaid
    Kondaveeti, Sanath
    Alabbosh, Khulood Fahad Saud
    Abu-Reesh, Ibrahim M.
    Mohanakrishna, Gunda
    BIOFUEL RESEARCH JOURNAL-BRJ, 2020, 7 (01): : 1128 - 1142