Fabrication of flexible microlens arrays for parallel super-resolution imaging

被引:32
|
作者
Zhang, Tianyao [1 ,2 ,3 ,4 ]
Li, Pan [1 ,2 ,3 ,4 ]
Yu, Haibo [1 ,2 ,3 ]
Wang, Feifei [1 ,2 ,3 ,5 ]
Wang, Xiaoduo [1 ,2 ,3 ]
Yang, Tie [1 ,2 ,3 ]
Yang, Wenguang [6 ]
Li, Wen J. [1 ,2 ,3 ,7 ]
Wang, Yuechao [1 ,2 ,3 ]
Liu, Lianqing [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Liaoning, Peoples R China
[2] Chinese Acad Sci, Inst Robot, Shenyang 110016, Liaoning, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110016, Liaoning, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[6] Yantai Univ, Sch Electromech & Automot Engn, Yantai, Peoples R China
[7] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Microlens array; Super-resolution imaging; PDMS; Optical microscopy; Microsphere; MICROSCOPY; RESOLUTION; MICROSPHERES; NANOJET; BACKSCATTERING; NANOPARTICLES; LIMIT;
D O I
10.1016/j.apsusc.2019.144375
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of optical microscopy has greatly promoted the progress of biological fields, providing outstanding observation tools for genetics, molecular biology, and bioengineering technology, from the macro- to the micro-scale. Owing to the optical diffraction limit, the imaging resolution of traditional optical microscopy is limited. Recently, the use of microspheres has been demonstrated to aid the capability to realize super-resolution imaging under white light illumination; however, using this approach, the imaging field of view is only a few microns, due to the size of the microspheres. In this paper, we fabricated microlens arrays by embedding microspheres into polydimethylsiloxane (PDMS) films. Using this method, we have successfully achieved parallel imaging under the sub-diffraction-limited resolution using multiple microspheres with a magnification up to x 2.59- x 2.99, and the observed results are consistent with finite-difference time-domain (FDTD) simulation results. Furthermore, two imaging modes were developed: the microlens array-based dynamic scanning imaging mode and the stochastic microlens array region imaging overlay reconstruction mode, a surface image of 900 mu m(2) was presented stitched with 210 images. This study combines the advantages of parallel imaging and dynamic imaging to increase efficiency and observation range.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Classical imaging theory of a microlens with super-resolution
    Duan, Yubo
    Barbastathis, George
    Zhang, Baile
    OPTICS LETTERS, 2013, 38 (16) : 2988 - 2990
  • [2] Parallel super-resolution imaging
    Christopher J Rowlands
    Elijah Y S Yew
    Peter T C So
    Nature Methods, 2013, 10 : 709 - 710
  • [3] Parallel super-resolution imaging
    Rowlands, Christopher J.
    Yew, Elijah Y. S.
    So, Peter T. C.
    NATURE METHODS, 2013, 10 (08) : 709 - 710
  • [4] Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk*
    Tong-Kai, Gu
    Lan-Lan, Wang
    Yang, Guo
    Wei-Tao, Jiang
    Yong-Sheng, Shi
    Shuo, Yang
    Jin-Ju, Chen
    Hong-Zhong, Liu
    ACTA PHYSICA SINICA, 2023, 72 (09)
  • [5] Super-resolution image restoration for microlens array imaging system
    Wu, Heng
    Luo, Shaojuan
    Chen, Meiyun
    Xiao, Huapan
    Wang, Tao
    He, Chunhua
    OPTICS AND LASER TECHNOLOGY, 2024, 170
  • [6] Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning
    Lim, C. S.
    Hong, M. H.
    Lin, Y.
    Xie, Q.
    Luk'yanchuk, B. S.
    Kumar, A. Senthil
    Rahman, M.
    APPLIED PHYSICS LETTERS, 2006, 89 (19)
  • [7] Spherical metallic nanoparticle arrays for super-resolution imaging
    Yan, Chang Chun
    Zhang, Dao Hua
    Li, Dong Dong
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (06)
  • [8] Super-resolution photoacoustic and ultrasound imaging with sparse arrays
    Vilov, Sergey
    Arnal, Bastien
    Hojman, Eliel
    Eldar, Yonina C.
    Katz, Ori
    Bossy, Emmanuel
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] Super-resolution photoacoustic and ultrasound imaging with sparse arrays
    Sergey Vilov
    Bastien Arnal
    Eliel Hojman
    Yonina C. Eldar
    Ori Katz
    Emmanuel Bossy
    Scientific Reports, 10
  • [10] Super-resolution imaging with an achromatic multi-level diffractive microlens array
    Banerji, Sourangsu
    Meem, Monjurul
    Majumder, Apratim
    Sensale-Rodriguez, Berardi
    Menon, Rajesh
    OPTICS LETTERS, 2020, 45 (22) : 6158 - 6161