CLASSIFICATION OF SCALING LIMITS OF UNIFORM QUADRANGULATIONS WITH A BOUNDARY

被引:12
|
作者
Baur, Erich [1 ]
Miermont, Gregory [2 ]
Ray, Gourab [3 ]
机构
[1] Bern Univ Appl Sci, Quellgasse 21, CH-2502 Biel, Switzerland
[2] ENS Lyon, Unite Math Pures & Appl, 46 Allee Italie, F-69364 Lyon 07, France
[3] Univ Victoria, Math & Stat, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
来源
ANNALS OF PROBABILITY | 2019年 / 47卷 / 06期
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Planar map; quadrangulation; Brownian map; Brownian disk; Brownian tree; scaling limit; Gromov-Hausdorff convergence; PLANAR MAPS; GEODESICS;
D O I
10.1214/18-AOP1316
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study noncompact scaling limits of uniform random planar quadran-gulations with a boundary when their size tends to infinity. Depending on the asymptotic behavior of the boundary size and the choice of the scaling factor, we observe different limiting metric spaces. Among well-known objects like the Brownian plane or the self-similar continuum random tree, we construct two new one-parameter families of metric spaces that appear as scaling limits: the Brownian half-plane with skewness parameter theta and the infinite-volume Brownian disk of perimeter sigma. We also obtain various coupling and limit results clarifying the relation between these objects.
引用
收藏
页码:3397 / 3477
页数:81
相关论文
共 50 条