Control system for MR-guided cryotherapy - short-term prediction of therapy boundary using automatic segmentation and 3D optical flow

被引:0
|
作者
Nakamura, R
Tuncali, K
Morrison, PR
Hata, N
Silverman, SG
Kikinis, R
Jolesz, FA
Zientara, GP
机构
[1] Tokyo Womens Med Univ, Inst Adv Biomed Engn & Sci, Tokyo 1628666, Japan
[2] Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
[4] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Mechanoinformat, Bunkyo Ku, Tokyo 1338656, Japan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
During cryotherapy, it is extremely useful for the interventionalists to have available intra-operatively a 3D iceball visualization, to ensure the effectiveness and safety of the procedure. Additionally, it highly beneficial to provide the interventionalists with a best estimate of how the iceball will grow in the future, and an estimate of the extent to which the target region and the tissues around it will be ablated. In this study, we introduce a newly developed control system for cryotherapy using a novel approach for the real-time/future-predicted assessments of the treatment. The system has been validated using results from cryotherapy experiments.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 13 条
  • [1] Automatic model-based 3D lesion segmentation for evaluation of MR-guided thermal ablation therapy
    Lazebnik, RS
    Weinberg, BD
    Breen, MS
    Lewin, JS
    Wilson, DL
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 535 - 545
  • [2] Evaluation of a Novel 3D Distortion and Quality Control Phantom for MR-Guided Radiation Therapy
    Antolak, A.
    Paliwal, B.
    Jackson, E.
    Mallozzi, R.
    Yadav, P.
    MEDICAL PHYSICS, 2018, 45 (06) : E544 - E544
  • [3] Plan Metric and 3D Dose Prediction for Improved Online Adaptive Decisions in MR-Guided Radiation Therapy
    Thomas, A.
    Fu, Y.
    Parikh, P.
    Yang, D.
    MEDICAL PHYSICS, 2019, 46 (06) : E517 - E517
  • [4] Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point
    Mougenot, C
    Salomir, R
    Palussière, J
    Grenier, N
    Moonen, CTW
    MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) : 1005 - 1015
  • [5] Semiautomatic parametric model-based 3D lesion segmentation for evaluation of MR-guided radiofrequency ablation therapy
    Lazebnik, RS
    Weinberg, BD
    Breen, MS
    Lewin, JS
    Wilson, DL
    ACADEMIC RADIOLOGY, 2005, 12 (12) : 1491 - 1501
  • [6] Using 3D Dosimeters for the Investigation of the Electron Return Effect (ERE) in MR-Guided Radiation Therapy: A Feasibility Study
    Choi, G.
    Lee, H.
    Alqathami, M.
    Ibbott, G.
    MEDICAL PHYSICS, 2016, 43 (06) : 3856 - 3856
  • [7] A 3D grouped convolutional recurrent neural network for short-term traffic flow data prediction
    Zijun Cai
    Wangtu Xu
    Yanjie Wen
    Journal of Data, Information and Management, 2025, 7 (1): : 93 - 105
  • [8] 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement
    Sun, Yankui
    Zhang, Tian
    Zhao, Yue
    He, Yufan
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2016, 9 (02)
  • [9] Rapid CNN-based needle localization for automatic slice alignment in MR-guided interventions using 3D undersampled radial white-marker imaging
    Faust, Jonas Frederik
    Krafft, Axel Joachim
    Polak, Daniel
    Speier, Peter
    Behl, Nicolas Gerhard Roland
    Ooms, Nathan
    Roll, Jesse
    Krieger, Joshua
    Ladd, Mark Edward
    Maier, Florian
    MEDICAL PHYSICS, 2024, 51 (11) : 8018 - 8033
  • [10] FlyNet 2.0: drosophila heart 3D (2D+time) segmentation in optical coherence microscopy images using a convolutional long short-term memory neural network
    Dong, Zhao
    Men, Jing
    Yang, Zhiwen
    Jerwick, Jason
    Li, Airong
    Tanzi, Rudolph E.
    Zhou, Chao
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (03) : 1568 - 1579