A method to predict the influence of geometric non-linearities on the natural frequencies of an empty laminated orthotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method (in terms of the elements of the elasticity matrix). The uncoupled equations are solved with the help of elliptic functions. The frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature. (C) 1997 Published by Elsevier Science Ltd.