Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry

被引:114
|
作者
Feser, Joseph P. [1 ]
Liu, Jun [2 ,3 ]
Cahill, David G. [2 ,3 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2014年 / 85卷 / 10期
关键词
DOMAIN THERMOREFLECTANCE; HEAT;
D O I
10.1063/1.4897622
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We previously demonstrated an extension of time-domain thermoreflectance (TDTR) which utilizes offset pump and probe laser locations to measure in-plane thermal transport properties of multilayers. However, the technique was limited to systems of transversely isotropic materials studied using axisymmetric laser intensities. Here, we extend the mathematics so that data reduction can be performed on non-transversely isotropic systems. An analytic solution of the diffusion equation for an N-layer system is given, where each layer has a homogenous but otherwise arbitrary thermal conductivity tensor and the illuminating spots have arbitrary intensity profiles. As a demonstration, we use both TDTR and time-resolved magneto-optic Kerr effect measurements to obtain thermal conductivity tensor elements of < 110 > alpha-SiO2. We show that the out-of-phase beam offset sweep has full-width half-maxima that contains nearly independent sensitivity to the in-plane thermal conductivity corresponding to the scanning direction. Also, we demonstrate a Nb-V alloy as a low thermal conductivity TDTR transducer layer that helps improve the accuracy of in-plane measurements. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Anisotropic thermal conductivity tensor measurements using beam-offset frequency domain thermoreflectance (BO-FDTR) for materials lacking in-plane symmetry
    Tang, Lei
    Dames, Chris
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 164
  • [2] An optical pump-probe technique for measuring the thermal conductivity of liquids
    Schmidt, Aaron
    Chiesa, Matteo
    Chen, Xiaoyuan
    Chen, Gang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (06):
  • [3] Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films
    Arlein, J.L.
    Palaich, S.E.M.
    Daly, B.C.
    Subramonium, P.
    Antonelli, G.A.
    Journal of Applied Physics, 2008, 104 (03):
  • [4] Optical pump-probe measurements of sound velocity and thermal conductivity of hydrogenated amorphous carbon films
    Arlein, J. L.
    Palaich, S. E. M.
    Daly, B. C.
    Subramonium, P.
    Antonelli, G. A.
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (03)
  • [5] Theory of attosecond pump-probe measurements
    Scrinzi, A
    LASER PHYSICS, 2005, 15 (06) : 880 - 887
  • [6] In-plane and cross-plane thermal conductivity of graphene: Applications in thermal interface materials
    Balandin, Alexander A.
    CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES IV, 2011, 8101
  • [7] Evaluation of the thermal conductivity of porous silicon layers by an optical pump-probe method
    Bernini, U
    Lettieri, S
    Maddalena, P
    Vitiello, R
    Di Francia, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (05) : 1141 - 1150
  • [8] In-plane thermal conductivity determination through thermoreflectance analysis and measurements
    Aubain, Max S.
    Bandaru, Prabhakar R.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (08)
  • [9] In Situ Thermal Conductivity Measurements of Building Materials with a Thermal Probe
    Pilkington, B.
    Goodhew, S.
    deWilde, P.
    JOURNAL OF TESTING AND EVALUATION, 2010, 38 (03) : 339 - 346
  • [10] THERMAL MODELS FOR DETERMINING THERMAL CONDUCTIVITY AND THERMAL BOUNDARY CONDUCTANCE USING PUMP-PROBE THERMOREFLECTANCE TECHNIQUES
    Hopkins, Patrick E.
    Serrano, Justin R.
    Phinney, Leslie M.
    HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 1, 2009, : 497 - 503