On Multilabel Classification and Ranking with Bandit Feedback

被引:0
|
作者
Gentile, Claudio [1 ]
Orabona, Francesco [2 ]
机构
[1] Univ Insubria, DiSTA, I-21100 Varese, Italy
[2] Toyota Technol Inst Chicago, Chicago, IL 60637 USA
关键词
contextual bandits; structured prediction; ranking; online learning; regret bounds; generalized linear; ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We show O(T-1/2 log T) regret bounds, which improve in several ways on the existing results. We test the effectiveness of our upper-confidence scheme by contrasting against full-information baselines on diverse real-world multilabel data sets, often obtaining comparable performance.
引用
收藏
页码:2451 / 2487
页数:37
相关论文
共 50 条
  • [1] A Unified Model for Multilabel Classification and Ranking
    Brinker, Klaus
    Fuernkranz, Johannes
    Huellermeier, Eyke
    ECAI 2006, PROCEEDINGS, 2006, 141 : 489 - +
  • [2] Multilabel classification via calibrated label ranking
    Johannes Fürnkranz
    Eyke Hüllermeier
    Eneldo Loza Mencía
    Klaus Brinker
    Machine Learning, 2008, 73 : 133 - 153
  • [3] Multilabel classification via calibrated label ranking
    Fuernkranz, Johannes
    Huellermeier, Eyke
    Mencia, Eneldo Loza
    Brinker, Klaus
    MACHINE LEARNING, 2008, 73 (02) : 133 - 153
  • [4] Linear methods for reduction from ranking to multilabel classification
    Petrovskiy, Mikhail
    Glazkova, Valentina
    AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4304 : 1152 - +
  • [5] Beyond Bandit Feedback in Online Multiclass Classification
    van der Hoeven, Dirk
    Fusco, Federico
    Cesa-Bianchi, Nicole
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] On the Learnability of Multilabel Ranking
    Raman, Vinod
    Subedi, Unique
    Tewari, Ambuj
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] Multiclass classification with bandit feedback using adaptive regularization
    Koby Crammer
    Claudio Gentile
    Machine Learning, 2013, 90 : 347 - 383
  • [8] Multiclass classification with bandit feedback using adaptive regularization
    Crammer, Koby
    Gentile, Claudio
    MACHINE LEARNING, 2013, 90 (03) : 347 - 383
  • [9] Multilabel Ranking With Inconsistent Rankers
    Geng, Xin
    Zheng, Renyi
    Lv, Jiaqi
    Zhang, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5211 - 5224
  • [10] Multilabel Ranking with Inconsistent Rankers
    Geng, Xin
    Luo, Longrun
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3742 - 3747