Entropy and entanglement in quantum ground states

被引:131
|
作者
Hastings, M. B. [1 ]
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies & Theoret Div, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevB.76.035114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the relationship between correlations and entanglement in gapped quantum systems, with application to matrix product state representations. We prove that there exist gapped one-dimensional local Hamiltonians such that the entropy is exponentially large in the correlation length, and we present strong evidence supporting a conjecture that there exist such systems with arbitrarily large entropy. However, we then show, under an assumption on the density of states which is believed to be satisfied by many physical systems such as the fractional quantum Hall effect, that an efficient matrix product state representation of the ground state exists in any dimension. Finally, we comment on the implications for numerical simulation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Entanglement entropy of integer quantum Hall states
    Rodriguez, Ivan D.
    Sierra, German
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [2] Generic Entanglement Entropy for Quantum States with Symmetry
    Nakata, Yoshifumi
    Murao, Mio
    ENTROPY, 2020, 22 (06)
  • [3] Maximal entanglement versus entropy for mixed quantum states
    Wei, TC
    Nemoto, K
    Goldbart, PM
    Kwiat, PG
    Munro, WJ
    Verstraete, F
    PHYSICAL REVIEW A, 2003, 67 (02):
  • [4] Entanglement entropy of excited states in the quantum Lifshitz model
    Angel-Ramelli, Juanfernando
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):
  • [5] Entanglement entropy in excited states of the quantum Lifshitz model
    Parker, Daniel E.
    Vasseur, Romain
    Moore, Joel E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (25)
  • [6] Bipartite entanglement entropy in fractional quantum Hall states
    Zozulya, O. S.
    Haque, M.
    Schoutens, K.
    Rezayi, E. H.
    PHYSICAL REVIEW B, 2007, 76 (12):
  • [7] Quantum entanglement and entropy
    Giraldi, F.
    Grigolini, P.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (03): : 1 - 032310
  • [8] Quantum entanglement and entropy
    Giraldi, F
    Grigolini, P
    PHYSICAL REVIEW A, 2001, 64 (03): : 10
  • [9] Inference of quantum states: Maximum entropy and "fake" inferred entanglement
    Batle, J
    Casas, M
    Plastino, AR
    Plastino, A
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2002, 617 : 314 - 321
  • [10] Entanglement entropy of integer quantum Hall states in polygonal domains
    Rodriguez, Ivan D.
    Sierra, German
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,