Kangaroos, monopoly and discrete logarithms

被引:70
|
作者
Pollard, JM
机构
[1] Tidmarsh Cottage, Tidmarsh, Reading RG8 8EX, Manor Farm Lane
关键词
discrete logarithms; kangaroo method;
D O I
10.1007/s001450010010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The kangaroo method computes a discrete logarithm in an arbitrary cyclic group, given that the value is known to lie in a certain interval. A parallel version has been given by van Oorschot and Wiener with "linear speed-up". We improve the analysis of the running time, both for serial and parallel computers. We explore the variation of the running time with the set of "jumps" of the kangaroos, and confirm that powers of two are a good choice (we do not claim they are the best choice). We illustrate the theory with some calculations of interest to Monopoly players, and the method itself with a card trick due to Kruskal.
引用
收藏
页码:437 / 447
页数:11
相关论文
共 50 条
  • [1] Kangaroos, Monopoly and Discrete Logarithms
    J. M. Pollard
    Journal of Cryptology, 2000, 13 : 437 - 447
  • [2] Discrete logarithms for finite groups
    Klingler, Lee C.
    Magliveras, Spyros S.
    Richman, Fred
    Sramka, Michal
    COMPUTING, 2009, 85 (1-2) : 3 - 19
  • [3] Discrete logarithms: Recent progress
    Buchmann, J
    Weber, D
    CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2000, : 42 - 56
  • [4] Discrete Logarithms in GF(p)
    Coppersmith, Don
    Odlzyko, Andrew M.
    Schroeppel, Richard
    ALGORITHMICA, 1986, 1 (1-4) : 1 - 15
  • [5] TEST EMBEDDING WITH DISCRETE LOGARITHMS
    LEMPEL, M
    GUPTA, SK
    BREUER, MA
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (05) : 554 - 566
  • [6] Fixed Points for Discrete Logarithms
    Levin, Mariana
    Pomerance, Carl
    Soundararajan, K.
    ALGORITHMIC NUMBER THEORY, 2010, 6197 : 6 - +
  • [7] Discrete Logarithms: The Past and the Future
    Andrew Odlyzko
    Designs, Codes and Cryptography, 2000, 19 : 129 - 145
  • [8] COMPUTING DISCRETE LOGARITHMS IN AN INTERVAL
    Galbraith, Steven D.
    Pollard, John M.
    Ruprai, Raminder S.
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 1181 - 1195
  • [9] Integer factorization and discrete logarithms
    Odlyzko, A
    LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 258 - 258
  • [10] Discrete logarithms for finite groups
    Lee C. Klingler
    Spyros S. Magliveras
    Fred Richman
    Michal Sramka
    Computing, 2009, 85 : 3 - 19