Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review

被引:45
|
作者
Capuana, Elisa [1 ]
Lopresti, Francesco [1 ]
Pavia, Francesco Carfi [1 ]
Brucato, Valerio [1 ]
La Carrubba, Vincenzo [1 ,2 ]
机构
[1] Univ Palermo, Dept Engn, RU INSTM, Viale Sci, I-90128 Palermo, Italy
[2] Univ Palermo, ATeN Ctr, Viale Sci, I-90128 Palermo, Italy
关键词
scaffold; tissue engineering; processing; electrospinning; phase separation; freeze-drying; INDUCED PHASE-SEPARATION; TUBULAR SCAFFOLD; PLLA SCAFFOLDS; DESIGN; DIFFERENTIATION; CONSTRUCTION; BIOMATERIALS; CELLULOSE; MEMBRANES; LIQUID;
D O I
10.3390/polym13132041
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time- and cost-effective assets. This is necessary for easy processability, which is associated with the large range of biomaterials supporting the use of fabrication technologies. This paper presents a review of scaffold fabrication methods starting from polymer solutions that provide highly porous structures under controlled process parameters. In this review, general information of solution-based technologies, including freeze-drying, thermally or diffusion induced phase separation (TIPS or DIPS), and electrospinning, are presented, along with an overview of their technological strategies and applications. Furthermore, the differences in the fabricated constructs in terms of pore size and distribution, porosity, morphology, and mechanical and biological properties, are clarified and critically reviewed. Then, the combination of these techniques for obtaining scaffolds is described, offering the advantages of mimicking the unique architecture of tissues and organs that are intrinsically difficult to design.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Fabrication of Fibrin Based Electrospun Multiscale Composite Scaffold for Tissue Engineering Applications
    Sreerekha, P. R.
    Menon, Deepthy
    Nair, S. V.
    Chennazhi, K. P.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2013, 9 (05) : 790 - 800
  • [2] Facile fabrication of spongy nanofibrous scaffold for tissue engineering applications
    Hwang, Tae In
    Maharjan, Bikendra
    Tiwari, Arjun Prasad
    Lee, Sunny
    Joshi, Mahesh Kumar
    Park, Chan Hee
    Kim, Cheol Sang
    MATERIALS LETTERS, 2018, 219 : 119 - 122
  • [3] Osteochondral Tissue Engineering: Scaffold Materials, Fabrication Techniques and Applications
    Wang, Zhenyu
    Xu, Jie
    Zhu, Jingjing
    Fang, Huan
    Lei, Wanyu
    Qu, Xinrui
    Cheng, Yuen Yee
    Li, Xiangqin
    Guan, Yanchun
    Wang, Hongfei
    Song, Kedong
    BIOTECHNOLOGY JOURNAL, 2025, 20 (01)
  • [4] Solution-based fabrication of mechanically transformative materials for implantable applications
    Zhang, Xinxin
    Zhou, Anwei
    Hu, Gaohua
    Li, Yanyan
    Zhang, Kuikui
    Liu, Bing
    Ning, Xinghai
    Kong, Desheng
    BIOMATERIALS SCIENCE, 2021, 9 (20) : 6950 - 6956
  • [5] A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering
    Shick, Tang Mei
    Kadir, Aini Zuhra Abdul
    Ngadiman, Nor Hasrul Akhmal
    Ma'aram, Azanizawati
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2019, 34 (06) : 415 - 435
  • [6] Tissue Engineering Scaffold Based On Starch: A Review
    Roslan, M. Riza
    Nasir, N. F. Mohd
    Cheng, E. M.
    Amin, N. A. M.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, : 1857 - 1860
  • [7] Fabrication and biocompatibility of novel bilayer scaffold for skin tissue engineering applications
    Franco, Rose Ann
    Min, Young-Ki
    Yang, Hun-Mo
    Lee, Byong-Taek
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2013, 27 (05) : 605 - 615
  • [8] Solution-Based Synthesis and Processing of Metal Chalcogenides for Thermoelectric Applications
    Shah, Kwok Wei
    Wang, Su-Xi
    Zheng, Yun
    Xu, Jianwei
    APPLIED SCIENCES-BASEL, 2019, 9 (07):
  • [9] Fabrication technology of tissue engineering scaffold based on rapid prototyping
    Yan Y.
    Li S.
    Xiong Z.
    Wang X.
    Zhang T.
    Zhang R.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2010, 46 (05): : 93 - 98
  • [10] Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review
    Bhushan, Sakchi
    Singh, Sandhya
    Maiti, Tushar Kanti
    Sharma, Chhavi
    Dutt, Dharm
    Sharma, Shubham
    Li, Changhe
    Tag Eldin, Elsayed Mohamed
    BIOENGINEERING-BASEL, 2022, 9 (12):