Structurally modified compounds of hydroxychloroquine, remdesivir and tetrahydrocannabinol against main protease of SARS-CoV-2, a possible hope for COVID-19: Docking and molecular dynamics simulation studies

被引:37
|
作者
Mishra, Deepak [1 ]
Maurya, Radha Raman [2 ]
Kumar, Kamlesh [3 ]
Munjal, Nupur S. [4 ]
Bahadur, Vijay [1 ]
Sharma, Sandeep [1 ]
Singh, Prashant [5 ]
Bahadur, Indra [6 ]
机构
[1] SRM Univ, Dept Chem, Delhi 131029, Haryana, India
[2] Univ Delhi, Univ Enclave, Ramjas Coll, Dept Chem, Delhi 110007, India
[3] Kumaun Univ, Dept Chem, Naini Tal 263001, UK, India
[4] Inst Bioinformat, Int Technol Pk, Bangalore 560066, Karnataka, India
[5] Delhi Univ, Atma Ram Sanatan Dharma ARSD Coll, Dept Chem, New Delhi 110021, India
[6] North West Univ, Fac Nat & Agr Sci, Dept Chem, Potchefstroom, South Africa
关键词
COVID-19; SARS-CoV-2; Hydroxychloroquine; Remdesivir; THC; Docking; MD simulation; CORONAVIRUSES; REPLICATION; ACCURACY; CANNABIS; GROMACS; UPDATE;
D O I
10.1016/j.molliq.2021.116185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Now a days, more than 200 countries faces the health crisis due to epidemiological disease COVID-19 caused by SARS-CoV-2 virus. It will cause a very high impact on world's economy and global health sector. Earlier the structure of main protease (M-pro) protein was deposited in the RCSB protein repository. Hydroxychloroquine (HCQ) and remdesivir were found to effective in treatment of COVID-19 patients. Here we have performed docking and molecule dynamic (MD) simulation study of HCQ and remdesivir with M-pro protein which gave promising results to inhibit M-pro protein in SARS-CoV-2. On the basis of results obtained we designed structurally modified 18 novel derivatives of HCQ, remdesivir and tetrahydrocannabinol (THC) and carried out docking studies of all the derivatives. From the docking studies six molecules DK4, DK7, DK10, DK16, DK17 and DK19 gave promising results and can be use as inhibitor for M-pro of SARS-CoV-2 to control COVID-19 very effectively. Further, molecular dynamics simulation of one derivative of HCQ and one derivative of tetrahydrocannabinol showing excellent docking score was performed along with the respective parent molecules. The two derivatives gave excellent docking score and higher stability than the parent molecule as validated with molecular dynamics (MD) simulation for the binding affinities towards M-pro of SARS-CoV-2 thus represented as strong inhibitors at very low concentration. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies
    Sajid Jamal, Qazi Mohammad
    Alharbi, Ali H.
    Ahmad, Varish
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (17): : 7960 - 7974
  • [2] Identification of musk compounds as inhibitors of the main SARS-CoV-2 protease by molecular docking and molecular dynamics studies
    Belhassan, Assia
    Salgado, Guillermo
    Mendoza-Huizar, Luis humberto
    Zaki, Hanane
    Chtita, Samir
    Lakhlifi, Tahar
    Bouachrine, Mohammed
    Candia, Lorena gerli
    Cardona, Wilson
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2024, 89 (11) : 1447 - 1460
  • [3] Molecular docking and dynamics simulation of main protease of SARS-CoV-2 with naproxen derivative
    Hussein, Rageh K.
    Marashdeh, Mohammad
    El-Khayatt, Ahmed M.
    BIOINFORMATION, 2023, 19 (04) : 358 - 361
  • [4] Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease
    Ouassaf, Mebarka
    Belaidi, Salah
    Chtita, Samir
    Lanez, Touhami
    Abul Qais, Faizan
    Amiruddin, Hashmi Md
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (21): : 11264 - 11273
  • [5] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Aniruddhya Mukherjee
    Khushhali Menaria Pandey
    Krishna Kumar Ojha
    Sumanta Kumar Sahu
    Beni-Suef University Journal of Basic and Applied Sciences, 12
  • [6] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Mukherjee, Aniruddhya
    Pandey, Khushhali Menaria
    Ojha, Krishna Kumar
    Sahu, Sumanta Kumar
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2023, 12 (01)
  • [7] Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors
    Cardoso, Wesley B.
    Mendanha, Sebastiao A.
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1225
  • [8] Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study
    Mahmud, Shafi
    Biswas, Suvro
    Paul, Gobindo Kumar
    Mita, Mohasana Akter
    Afrose, Shamima
    Hasan, Md Robiul
    Shimu, Mst Sharmin Sultana
    Uddin, Mohammad Abu Raihan
    Uddin, Md Salah
    Zaman, Shahriar
    Kibria, K. M. Kaderi
    Khan, Md Arif
    Bin Emran, Talha
    Abu Saleh, Md
    ARABIAN JOURNAL OF CHEMISTRY, 2021, 14 (09)
  • [9] In silico detection of inhibitor potential of Passiflora compounds against SARS-Cov-2(Covid-19) main protease by using molecular docking and dynamic analyses
    Yalcin, Serap
    Yalcinkaya, Seda
    Ercan, Fahriye
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1240
  • [10] Molecular docking, molecular dynamics simulation, and ADMET analysis of levamisole derivatives against the SARS-CoV-2 main protease (MPro)
    El Khatabi, Khalil
    Aanouz, Ilham
    Alaqarbeh, Marwa
    Ajana, Mohammed Aziz
    Lakhifi, Tahar
    Bouachrine, Mohammed
    BIOIMPACTS, 2022, 12 (02) : 107 - 113