A Systematic Spatiotemporal Modeling Framework for Characterizing Traffic Dynamics Using Hierarchical Gaussian Mixture Modeling and Entropy Analysis

被引:6
|
作者
Hsu, Chih-Ming [1 ]
Lian, Feng-Li [1 ]
Huang, Cheng-Ming [2 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
来源
IEEE SYSTEMS JOURNAL | 2014年 / 8卷 / 04期
关键词
Entropy measurement; Gaussian mixture modeling (GMM); phase plan analysis; traffic flow modeling; PATTERNS; FLOW; RAMP;
D O I
10.1109/JSYST.2013.2253197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To accurately characterize traffic flow, a hierarchical Gaussian mixture modeling (GMM) framework is proposed for constructing a proper empirical dynamics model. The traffic flow data are first represented by a linear combination of multiple Gaussian functions for characterizing related timing and geographical parameters and for reducing the quantity of collected traffic data. To further examine dynamically changing behaviors, the phase-transition approach is used for identifying various traffic flow patterns and their dynamic switching behaviors. Furthermore, the information entropy on the traffic data collected at various vehicle detectors can be calculated for characterizing the location significance of these detectors. Detailed experimental analyses showed that five types of traffic flow patterns can be identified based on a six-month traffic data set from Taiwanese highway systems. Each traffic flow pattern indicates a distinct interpretation of a special dynamic traffic behavior.
引用
收藏
页码:1126 / 1135
页数:10
相关论文
共 50 条
  • [1] Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling
    Alghamdi, Taghreed
    Elgazzar, Khalid
    Sharaf, Taysseer
    FUTURE INTERNET, 2021, 13 (09):
  • [2] Characterizing Microwave Power in a MPCVD System using Gaussian Mixture Modeling
    Chou, Jen-Hsiang
    Hsu, Chih-Ming
    Wang, Shun-Yuan
    Lin, Chii-Ruey
    Jhuang, June-Yen
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (06): : 3005 - 3012
  • [3] Automatic texture defect detection using Gaussian mixture entropy modeling
    Susan, Seba
    Sharma, Monika
    NEUROCOMPUTING, 2017, 239 : 232 - 237
  • [4] A Bayesian framework for Gaussian mixture background modeling
    Lee, DS
    Hull, JJ
    Erol, B
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 973 - 976
  • [5] A hierarchical mixture modeling framework for population synthesis
    Sun, Lijun
    Erath, Alexander
    Cai, Ming
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2018, 114 : 199 - 212
  • [6] Agglomerative Hierarchical Speaker Clustering using Incremental Gaussian Mixture Cluster Modeling
    Han, Kyu J.
    Narayanan, Shrikanth S.
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 20 - 23
  • [7] Traffic Dynamics Exploration and Incident Detection Using Spatiotemporal Graphical Modeling
    Chao Liu
    Mo Zhao
    Anuj Sharma
    Soumik Sarkar
    Journal of Big Data Analytics in Transportation, 2019, 1 (1): : 37 - 55
  • [8] Analysis and Identification of Dermatological Diseases Using Gaussian Mixture Modeling
    Gupta, Chaahat
    Gondhi, Naveen Kumar
    Lehana, Parveen Kumar
    IEEE ACCESS, 2019, 7 : 99407 - 99427
  • [9] Entropy-Based Anomaly Detection for Gaussian Mixture Modeling
    Scrucca, Luca
    ALGORITHMS, 2023, 16 (04)
  • [10] Hierarchical mixture modeling with normalized inverse-Gaussian priors
    Lijoi, A
    Mena, RH
    Prünster, I
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1278 - 1291