Explicit inversion of Band Toeplitz matrices by discrete Fourier transform

被引:3
|
作者
Elouafi, Mohamed [1 ]
机构
[1] Lycee Moulay Alhassan, Classes Preparatoites Grandes Ecoles Ingn, Tangier, Morocco
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 09期
关键词
Toeplitz determinant; discrete Fourier transform; vandermonde determinants; symmetric elementary functions; DETERMINANTS; FORMULA;
D O I
10.1080/03081087.2017.1373729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an explicit formula for the p, q element of the inverse T -1 n, where Tn is a band Toeplitz matrix with left bandwidth s and right bandwidth r. The formula involves d x d determinants, d = r, r + 1, whose elements are the discrete Fourier transform of 1f, where f is the symbol of T-n.
引用
收藏
页码:1767 / 1782
页数:16
相关论文
共 50 条
  • [1] EXPLICIT INVERSION FORMULAS FOR TOEPLITZ BAND MATRICES
    TRENCH, WF
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 546 - 554
  • [2] INVERSION OF TOEPLITZ BAND MATRICES
    TRENCH, WF
    MATHEMATICS OF COMPUTATION, 1974, 28 (128) : 1089 - 1095
  • [3] INVERSION OF TOEPLITZ BAND MATRICES
    TRENCH, WF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A246 - A246
  • [4] The Discrete Cosine Transform, block toeplitz matrices, and wavelets
    Strang, G
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 202 : 517 - 536
  • [5] Explicit solution for Nonuniform Discrete Fourier Transform
    Shen, Yi
    Zhu, Chunhui
    Liu, Lijun
    Wang, Qiang
    Jin, Jing
    Lin, Yurong
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [6] Binary Discrete Fourier Transform and Its Inversion
    Levinson, Howard W.
    Markel, Vadim A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3484 - 3499
  • [7] Explicit inversion formulas for properly Hessenberg and Toeplitz-Hessenberg matrices
    Abderraman Marrero, Jesus
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (06): : 1239 - 1256
  • [8] On inversion of Toeplitz matrices
    Ng, MK
    Rost, K
    Wen, YW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 348 : 145 - 151
  • [9] INVERSION OF TOEPLITZ MATRICES
    PINAR, MA
    RAMIREZ, V
    ORTHOGONAL POLYNOMIALS AND THEIR APPLICATIONS /: PROCEEDINGS OF THE INTERNATIONAL CONGRESS, 1989, 117 : 171 - 177
  • [10] ON INVERSION OF TOEPLITZ AND CLOSE TO TOEPLITZ MATRICES
    BENARTZI, A
    SHALOM, T
    SACKLER, R
    SACKLER, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 : 173 - 192