Observational Test for a Random Sweeping Model in Solar Wind Turbulence

被引:19
|
作者
Perschke, C. [1 ,2 ]
Narita, Y. [2 ,3 ]
Motschmann, U. [1 ,4 ]
Glassmeier, K. H. [2 ,5 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany
[3] Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria
[4] Deutsch Zentrum Luft & Raumfahrt, Inst Planetenforsch, Rutherfordstr 2, D-12489 Berlin, Germany
[5] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany
关键词
CLUSTER; FIELD; PLASMA; DISSIPATION; SPECTRUM; NUMBER; WAVES;
D O I
10.1103/PhysRevLett.116.125101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Evidence of frequency broadening at ion kinetic scales due to large-scale eddies and waves is found in solar wind turbulence by a test for a random sweeping model using the magnetic energy spectrum in the frequency vs wave number domain in the comoving frame of the flow obtained from multispacecraft observations. The statistical analysis of the frequency vs wave number spectra without using Taylor's hypothesis shows Gaussian frequency broadening around nearly zero frequencies that increases for larger wave numbers and non-Gaussian tails at higher frequencies. Comparison of the observed frequency broadening with a random sweeping model derived from hydrodynamic turbulence reveals similarities with respect to the Gaussian shape. The standard deviation of the broadening scales with similar to k(1.6 perpendicular to 0.2) and differs from the hydrodynamic turbulence model that predicts similar to k(2/3). We interpret this stronger increasing broadening as a consequence of the more diverse large scale structures (eddies and waves) in plasma turbulence and the accompanied more complex sweeping. Consequently, an identification and association of waves with normal modes based on their dispersion relation only, in particular at ion kinetic scales and below, is not possible in solar wind turbulence.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] TIME CORRELATIONS AND RANDOM SWEEPING IN ISOTROPIC TURBULENCE
    NELKIN, M
    TABOR, M
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (01): : 81 - 83
  • [2] RANDOM SWEEPING EFFECT IN ISOTROPIC NUMERICAL TURBULENCE
    SANADA, T
    SHANMUGASUNDARAM, V
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (06): : 1245 - 1250
  • [3] An MHD Solar Wind Model with Turbulence Transport
    Usmanov, Arcadi V.
    Matthaeus, William H.
    Breech, Ben
    Goldstein, Melvyn L.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008, 2009, 406 : 160 - +
  • [4] Model for vortex turbulence with discontinuities in the solar wind
    Verkhoglyadova, OP
    Dasgupta, B
    Tsurutani, BT
    NONLINEAR PROCESSES IN GEOPHYSICS, 2003, 10 (4-5) : 335 - 343
  • [5] A dynamical model of plasma turbulence in the solar wind
    Howes, G. G.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2041):
  • [6] Nonaxisymmetric Anisotropy of Solar Wind Turbulence as a Direct Test for Models of Magnetohydrodynamic Turbulence
    Turner, A. J.
    Gogoberidze, G.
    Chapman, S. C.
    PHYSICAL REVIEW LETTERS, 2012, 108 (08)
  • [7] TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES
    DeForest, C. E.
    Matthaeus, W. H.
    Howard, T. A.
    Rice, D. R.
    ASTROPHYSICAL JOURNAL, 2015, 812 (02):
  • [8] Asymmetric multifractal model for solar wind intermittent turbulence
    Szczepaniak, A.
    Macek, W. M.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2008, 15 (04) : 615 - 620
  • [9] Observational Evidence for Solar Wind Proton Heating by Ion-Scale Turbulence
    Zhao, G. Q.
    Lin, Y.
    Wang, X. Y.
    Wu, D. J.
    Feng, H. Q.
    Liu, Q.
    Zhao, A.
    Li, H. B.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (18)
  • [10] Turbulence in the Solar Atmosphere and Solar Wind
    A. Petrosyan
    A. Balogh
    M. L. Goldstein
    J. Léorat
    E. Marsch
    K. Petrovay
    B. Roberts
    R. von Steiger
    J. C. Vial
    Space Science Reviews, 2010, 156 : 135 - 238