Supervised feature selection by clustering using conditional mutual information-based distances

被引:163
|
作者
Martinez Sotoca, Jose [1 ]
Pla, Filiberto [1 ]
机构
[1] Univ Jaume 1, Inst New Imaging Technol, Dept Llenguatges & Sistemes Informat, Castellon de La Plana 12071, Spain
关键词
Supervised feature selection; Clustering; Conditional mutual information; INPUT FEATURE-SELECTION;
D O I
10.1016/j.patcog.2009.12.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a supervised feature selection approach is presented, which is based on metric applied on continuous and discrete data representations. This method builds a dissimilarity space using information theoretic measures, in particular conditional mutual information between features with respect to a relevant variable that represents the class labels. Applying a hierarchical clustering, the algorithm searches for a compression of the information contained in the original set of features. The proposed technique is compared with other state of art methods also based on information measures. Eventually, several experiments are presented to show the effectiveness of the features selected from the point of view of classification accuracy. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2068 / 2081
页数:14
相关论文
共 50 条
  • [1] Comments on supervised feature selection by clustering using conditional mutual information-based distances
    Vinh, Nguyen X.
    Bailey, James
    PATTERN RECOGNITION, 2013, 46 (04) : 1220 - 1225
  • [2] CONDITIONAL DYNAMIC MUTUAL INFORMATION-BASED FEATURE SELECTION
    Liu, Huawen
    Mo, Yuchang
    Zhao, Jianmin
    COMPUTING AND INFORMATICS, 2012, 31 (06) : 1193 - 1216
  • [3] Conditional Mutual Information-Based Feature Selection Analyzing for Synergy and Redundancy
    Cheng, Hongrong
    Qin, Zhiguang
    Feng, Chaosheng
    Wang, Yong
    Li, Fagen
    ETRI JOURNAL, 2011, 33 (02) : 210 - 218
  • [4] A Mutual Information-Based Hybrid Feature Selection Method for Software Cost Estimation Using Feature Clustering
    Shi, Shihai
    Liu, Qin
    INTERNATIONAL JOINT CONFERENCE ON APPLIED MATHEMATICS, STATISTICS AND PUBLIC ADMINISTRATION (AMSPA 2014), 2014, : 481 - 490
  • [5] Mutual information-based filter hybrid feature selection method for medical datasets using feature clustering
    Sadegh Asghari
    Hossein Nematzadeh
    Ebrahim Akbari
    Homayun Motameni
    Multimedia Tools and Applications, 2023, 82 : 42617 - 42639
  • [6] Mutual information-based filter hybrid feature selection method for medical datasets using feature clustering
    Asghari, Sadegh
    Nematzadeh, Hossein
    Akbari, Ebrahim
    Motameni, Homayun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42617 - 42639
  • [7] A Mutual Information-Based Hybrid Feature Selection Method for Software Cost Estimation Using Feature Clustering
    Liu, Qin
    Shi, Shihai
    Zhu, Hongming
    Xiao, Jiakai
    2014 IEEE 38TH ANNUAL INTERNATIONAL COMPUTERS, SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2014, : 27 - 32
  • [8] Mutual information-based feature selection for radiomics
    Oubel, Estanislao
    Beaumont, Hubert
    Iannessi, Antoine
    MEDICAL IMAGING 2016: PACS AND IMAGING INFORMATICS: NEXT GENERATION AND INNOVATIONS, 2016, 9789
  • [9] Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy
    Gu, Xiangyuan
    Guo, Jichang
    Xiao, Lijun
    Li, Chongyi
    APPLIED INTELLIGENCE, 2022, 52 (02) : 1436 - 1447
  • [10] Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy
    Xiangyuan Gu
    Jichang Guo
    Lijun Xiao
    Chongyi Li
    Applied Intelligence, 2022, 52 : 1436 - 1447