Detecting and locating patterns in time series using machine learning

被引:7
|
作者
Janka, Dennis [1 ]
Lenders, Felix [1 ]
Wang, Shiyu [1 ,2 ]
Cohen, Andrew [1 ]
Li, Nuo [1 ]
机构
[1] ABB AG, Corp Res Germany, Wallstadter Str 59, D-68526 Ladenburg, Germany
[2] Karlsruhe Inst Technol, D-76133 Karlsruhe, Germany
关键词
Pattern recognition; Machine learning; Time-series classification; Industrial data analytics; Metals processing; Neural networks;
D O I
10.1016/j.conengprac.2019.104169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method is presented to detect and locate user-defined patterns in time series data. The method is based on decomposing time series into a sequence of fixed-length snapshots on which a classifier is applied. Snapshot classification results determine the exact position of the pattern. One advantage of this approach is that it can be applied to any process-specific pattern, e.g., spiking patterns, under- or overshoots, or (time-lagged) correlations. We demonstrate the efficacy of the approach by means of an example from steel production, namely a cold-rolling mill process. We detect two patterns: underswings and time-lagged spike repetition in multivariate series.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Detecting causality from time series in a machine learning framework
    Huang, Yu
    Fu, Zuntao
    Franzke, Christian L. E.
    CHAOS, 2020, 30 (06)
  • [2] Classification of wandering patterns in the elderly using machine learning and time series analysis
    Ramos-Rivera, Daniel
    Diaz-Ramirez, Arnoldo
    Trujillo, Leonardo
    Garcia-Vazquez, Juan P.
    Mejia-Alvarez, Pedro
    IEEE LATIN AMERICA TRANSACTIONS, 2024, 22 (12) : 1009 - 1018
  • [3] Detecting Architectural Integrity Violation Patterns Using Machine Learning
    Zakurdaeva, Alla
    Weiss, Michael
    Muegge, Steven
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1480 - 1487
  • [4] Detecting Attacks and Locating Malicious Devices Using Unmanned Air Vehicles and Machine Learning
    Junior, Evilasio C.
    Costa, Wanderson L.
    Portela, Arid L. C.
    Rocha, Leonardo S.
    Domes, Rafael L.
    Andrade, Rossana M. C.
    JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2022, 13 (01) : 11 - 20
  • [5] Detecting Anomalous Multivariate Time-Series via Hybrid Machine Learning
    Terbuch, Anika
    O'Leary, Paul
    Khalili-Motlagh-Kasmaei, Negin
    Auer, Peter
    Zohrer, Alexander
    Winter, Vincent
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] ON THE CALIBRATION OF METOCEAN TIME SERIES USING MACHINE LEARNING
    Podrazka, Olga
    Renac, Laury
    Enet, Francois
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 5A, 2022,
  • [7] Detecting spatial and temporal patterns in NDVI time series using histograms
    Loyarte, MMG
    CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (02) : 275 - 290
  • [8] Machine learning approach of detecting anomalies and forecasting time-series of IoT devices
    Malki, Amer
    Atlam, El-Sayed
    Gad, Ibrahim
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 8973 - 8986
  • [9] Detecting satellite unknown fault patterns using digital twin and machine learning
    Shen, Yinglong
    Cai, Junliang
    Lin, Jiawei
    Yang, Fan
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2025, 45 (01) : 46 - 58
  • [10] Sensitive time series prediction using extreme learning machine
    Hong-Bo Wang
    Xi Liu
    Peng Song
    Xu-Yan Tu
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 3371 - 3386