Random number generator and Monte Carlo type simulations on the CNN-UM

被引:0
|
作者
Ercsey-Ravasz, Maria [1 ,2 ]
Roska, Tamas [1 ]
Neda, Zoltan [2 ]
机构
[1] Pazmany Peter Cathol Univ, Dept Informat Technol, HU-1083 Budapest, Hungary
[2] Univ Babes Bolyai, Dept Phys, R-400084 Cluj Napoca, Romania
关键词
random number generator; stochastic simulations; CNN Universal Machine;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The computational paradigm represented by Cellular Neural Networks (CNN) gives new perspectives also for computational physics. Here we study the possibility of performing stochastic simulations on the CNN Universal Machine (CNN-UM). First by using a chaotic cellular automaton perturbed with the natural noise of the CNN-UM chip, a realistic binary random number generator (RNG) is built Using this RNG the site-percolation problem and the two-dimensional Ising model is studied by Monte Carlo type simulations. The results obtained on an ACE16K chip are in good agreement with the results obtained on digital computers. Computational time measurements suggest that the developing trend of the CNN-UM chips could assure an important advantage for the CNN-UM in the near future.
引用
收藏
页码:47 / +
页数:2
相关论文
共 50 条
  • [1] Comparison of a Quantum Random Number Generator with Pseudorandom Number Generators for Their Use in Molecular Monte Carlo Simulations
    Ghersi, Dario
    Parakh, Abhishek
    Mezei, Mihaly
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (31) : 2713 - 2720
  • [2] Using random number generators in Monte Carlo simulations
    Resende, FJ
    Costa, BV
    PHYSICAL REVIEW E, 1998, 58 (04): : 5183 - 5184
  • [3] PLFG: A highly scalable parallel pseudo-random number generator for Monte Carlo simulations
    Tan, CJK
    Blais, JAR
    HIGH PERFORMANCE COMPUTING AND NETWORKING, PROCEEDINGS, 2000, 1823 : 127 - 135
  • [4] Efficient Monte Carlo simulations using a shuffled nested Weyl sequence random number generator
    Tretiakov, KV
    Wojciechowski, KW
    PHYSICAL REVIEW E, 1999, 60 (06): : 7626 - 7628
  • [5] Bias in Monte Carlo Simulations Due To Pseudo-Random Number Generator Initial Seed Selection
    Hill, Jack C.
    Sawilowsky, Shlomo S.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2011, 10 (01) : 29 - 50
  • [6] Random Number Generators Tested on Quantum Monte Carlo Simulations
    Hongo, Kenta
    Maezono, Ryo
    Miura, Kenichi
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (11) : 2186 - 2194
  • [7] A MULTI-DIMENSIONAL, COUNTER-BASED PSEUDO RANDOM NUMBER GENERATOR AS A STANDARD FOR MONTE CARLO SIMULATIONS
    Hubbard, Douglas W.
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3064 - 3073
  • [8] Parallel pseudorandom number generator for large-scale Monte Carlo simulations
    Marchenko, Mikhail
    PARALLEL COMPUTING TECHNOLOGIES, PROCEEDINGS, 2007, 4671 : 276 - 282
  • [9] Quantum random bit generator service for Monte Carlo and other stochastic simulations
    Stevanovic, Radomir
    Topic, Goran
    Skala, Karolj
    Stipcevic, Mario
    Rogina, Branka Medved
    LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 508 - 515
  • [10] A NEW RANDOM-NUMBER GENERATOR FOR MULTISPIN MONTE-CARLO ALGORITHMS
    PIERRE, L
    GIAMARCHI, T
    SCHULZ, HJ
    JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (1-2) : 135 - 149