Small extracellular vesicles from human adipose-derived mesenchymal stromal cells: a potential promoter of fat graft survival

被引:13
|
作者
Chen, Aizhen [1 ,2 ,3 ,4 ]
Tang, Shijie [1 ,2 ,3 ,4 ]
He, Jiawei [1 ,2 ,3 ]
Li, Xiangyu [1 ,4 ]
Peng, Guohao [1 ,2 ,3 ,4 ]
Zhang, Haoruo [1 ,2 ,3 ,4 ]
Chen, Jinghua [5 ]
Chen, Liangwan [6 ]
Chen, Xiaosong [1 ,2 ,3 ]
机构
[1] Fujian Med Univ Union Hosp, Dept Plast Surg, Fuzhou, Peoples R China
[2] Fujian Med Univ, Dept Plast Surg, Fuzhou, Peoples R China
[3] Fujian Med Univ, Regenerat Med Inst, Fuzhou, Peoples R China
[4] Fujian Med Univ, Dept Stem Cell Res Inst, Fuzhou, Peoples R China
[5] Fujian Med Univ, Sch Pharm, Dept Pharmaceut Anal, Fuzhou, Peoples R China
[6] Fujian Med Univ Union Hosp, Dept Cardiac Surg, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Small extracellular vesicles; Human adipose-derived mesenchymal stromal cells; Fat graft; Angiogenesis; STEM-CELL; EXOSOMES; ANGIOGENESIS; REGENERATION; GUIDELINES; DISEASE; REPAIR; YIELD; VEGF;
D O I
10.1186/s13287-021-02319-4
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background Small extracellular vesicles (sEVs) with genetic information secreted by cells play a crucial role in the cellular microenvironment. In this study, our purpose is to explore the characteristics of the small extracellular vesicles of human adipose-derived mesenchymal stromal cells (hADMSC-sEVs) and studied the role of hADMSC-sEVs in improving the survival rate of grafted fat. Methods In the present study, we used the transmission electron microscopy, nano-tracking analysis, nanoflow surface protein analysis, and zeta potential value to identify sEVs. SEVs' trajectory was traced dynamically to verify whether hADMSC-sEVs can be internalized into human umbilical vein endothelial cells (HUVECs) in vitro at different times. The angiogenic property of hADMSC-sEVs was observed by measuring the volume, weight, and histological analysis of the grafted fats in nude mouse models. Results Our research showed that the hADMSC-sEVs were sEVs with double-layer membrane structure and the diameter of which is within 30-150 nm. hADMSC-sEVs exert biological influence mainly through internalization into cells. Compared with the control group, the hADMSC-sEVs group had a significantly higher survival rate of grafted fat, morphological integrity, and a lower degree of inflammation and fibrosis. And immunohistochemistry showed that hADMSC-sEVs significantly increased the neovascularisation and the expression of CD34, VEGFR2, and Ki-67 in the graft tissue. Conclusions As a potential nanomaterial, hADMSC-sEVs have been explored in the field of cell-free application of stem cell technology. hADMSC-sEVs promoted the survival of grafted fats by promoting the formation of new blood vessels, which is another promising progress in the field of regenerative medicine. We believe that hADMSC-sEVs will have a broad application prospect in the field of regenerative medicine in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Small extracellular vesicles from human adipose-derived mesenchymal stromal cells: a potential promoter of fat graft survival
    Aizhen Chen
    Shijie Tang
    Jiawei He
    Xiangyu Li
    Guohao Peng
    Haoruo Zhang
    Jinghua Chen
    Liangwan Chen
    Xiaosong Chen
    Stem Cell Research & Therapy, 12
  • [2] Characterization of Extracellular Vesicles from Preconditioned Human Adipose-Derived Stromal/Stem Cells
    Gessner, Alec
    Koch, Benjamin
    Klann, Kevin
    Fuhrmann, Dominik C.
    Farmand, Samira
    Schubert, Ralf
    Muench, Christian
    Geiger, Helmut
    Baer, Patrick C.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06) : 1 - 15
  • [3] Purification and Characterization of Extracellular Vesicles from Human Adipose-derived Mesenchymal Stem Cells
    Wang, Yuting
    Han, Yan
    Han, Yudi
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (207):
  • [4] Equine Adipose-Derived Mesenchymal Stromal Cells Release Extracellular Vesicles Enclosing Different Subsets of Small RNAs
    Capomaccio, Stefano
    Cappelli, Katia
    Bazzucchi, Cinzia
    Coletti, Mauro
    Gialletti, Rodolfo
    Moriconi, Franco
    Passamonti, Fabrizio
    Pepe, Marco
    Petrini, Stefano
    Mecocci, Samanta
    Silvestrelli, Maurizio
    Pascucci, Luisa
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [5] Delayed Supplementation Strategy of Extracellular Vesicles from Adipose-Derived Mesenchymal Stromal Cells with Improved Proregenerative Efficiency in a Fat Transplantation Model
    Mou, Shan
    Li, Yuan
    Sun, Di
    Zhou, Muran
    Li, Jialun
    Chen, Lifeng
    Liu, Shaokai
    Yang, Jie
    Xiao, Peng
    Tong, Jing
    Wang, Zhenxing
    Sun, Jiaming
    STEM CELLS INTERNATIONAL, 2022, 2022
  • [6] Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos
    Maria Luz Alonso-Alonso
    Laura García-Posadas
    Yolanda Diebold
    Stem Cell Reviews and Reports, 2022, 18 : 854 - 901
  • [7] Extracellular Vesicles from Human Adipose-Derived Mesenchymal Stem Cells: A Review of Common Cargos
    Alonso-Alonso, Maria Luz
    Garcia-Posadas, Laura
    Diebold, Yolanda
    STEM CELL REVIEWS AND REPORTS, 2022, 18 (03) : 854 - 901
  • [8] Angiogenic Effects and Crosstalk of Adipose-Derived Mesenchymal Stem/Stromal Cells and Their Extracellular Vesicles with Endothelial Cells
    Rautiainen, Swarna
    Laaksonen, Timo
    Koivuniemi, Raili
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [9] Effects of Hypoxia on RNA Cargo in Extracellular Vesicles from Human Adipose-Derived Stromal/Stem Cells
    Koch, Benjamin
    Gessner, Alec
    Farmand, Samira
    Fuhrmann, Dominik C.
    Chiocchetti, Andreas G.
    Schubert, Ralf
    Baer, Patrick C.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [10] Adipose-derived stromal/stem cells and extracellular vesicles for cancer therapy
    Hamilton, Gerhard
    Teufelsbauer, Maryana
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2022, 22 (01) : 67 - 78