The accuracy of nine solar radiation (R-s) estimation models and their effects on reference evapotranspiration (ETo) were evaluated using data from eight meteorological stations in Canada. The R-s estimation models were FAO recommended Angstrom-Prescott (A-P) coefficients, locally calibrated A-P coefficients, Hargreaves and Samani (H-S) (1982), Annandale et al., (2002), Allen (1995), Self-Calibrating (S-C, Allen, 1997), Samani (2000), Mahmood and Hubbard (M-H) (2002), and Bristow and Campbell (B-C) (1984). The estimated R-s values were then compared to measured R-s to check the appropriateness of these models at the study locations. Based on root mean square error (RMSE), mean bias error (MBE) and modelling efficiency (ME) ranking, calibrated A-P coefficients performed better than all other methods. The calibrated H-S method (using new K-RS 0.15) estimated R-s more accurately than FAO-56 recommended A-P in Elora, and Winnipeg. The RMSE of the calibrated H-S method ranged between 1-6% and the RMSE of the calibrated and FAO recommended Angstrom-Prescott (A-P) methods ranged between 1-9%. The models with the least accuracy at the eight locations are the Mahmood & Hubbard (2002) and Self-Calibrating models. The percent deviation in ETo calculated with estimated R-s was reduced by about 50% as compared to deviation in measured versus estimated R-s.