Flexural behaviour of fibre-reinforced polymer-aluminium sandwich curtain walls

被引:1
|
作者
Liu, Yang [1 ]
Kuang, J. S. [1 ]
Chan, B. Y. B. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
关键词
Fibre-reinforced polymer-aluminium sandwich curtain wall; fibre-reinforced polymer; phase change material; flexural behaviour; PANEL; CORE; PERFORMANCE; COMPOSITES; IMPACT; SKINS; BEAMS;
D O I
10.1177/1099636216681193
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A new type of fibre-reinforced polymer-aluminium sandwich curtain wall panel, which consists of layers of aluminium plate, fibre-reinforced polymer plate, foam core and gypsum board, was proposed to achieve high strength and stiffness, efficient energy saving and good fire resistance for the modern curtain wall systems in buildings. An experimental study was conducted to investigate the flexural behaviour of the fibre-reinforced polymer-aluminium composite curtain wall panels. Three groups of large-scale specimens with different thickness of foam core with and without a phase change material layer were tested under uniformly distributed loads. The test results showed that due to the asymmetric arrangement of sandwich layers, the loading directions had a significant effect on the flexural behaviour of the panels with and without a phase change material layer. It was also shown that with the increase of the foam core thickness, the flexural behaviour of panels was significantly improved. In addition, the phase change material layer had little effect on the flexural behaviour of the sandwich panels under and beyond the serviceability conditions, but significantly reduced the serviceability strength.
引用
收藏
页码:783 / 810
页数:28
相关论文
共 50 条
  • [1] Flexural behaviour of fibre-reinforced syntactic foams
    Karthikeyan, CS
    Sankaran, S
    Kishore
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2005, 290 (01) : 60 - 65
  • [2] Flexural behaviour of semi-precast slabs of fibre-reinforced concrete reinforced with prestressed basalt fibre-reinforced polymer and steel bars
    Mahmoud, Maha R., I
    Wang, Xin
    Bai, Xingyu
    Altayeb, Mohamedelmujtaba
    Liu, Shui
    Moussa, Amr M. A.
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (15) : 2609 - 2625
  • [3] In-plane flexural behaviour and failure prediction of carbon fibre-reinforced aluminium laminates
    Xu, Ruohang
    Huang, Yaxin
    Lin, Yuan
    Bai, Binsheng
    Huang, Teng
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2017, 36 (18) : 1384 - 1399
  • [4] Flexural Capacity and Behaviour of Geopolymer Concrete Beams Reinforced with Glass Fibre-Reinforced Polymer Bars
    Hemn Qader Ahmed
    Dilshad Kakasor Jaf
    Sinan Abdulkhaleq Yaseen
    International Journal of Concrete Structures and Materials, 2020, 14
  • [5] Flexural Capacity and Behaviour of Geopolymer Concrete Beams Reinforced with Glass Fibre-Reinforced Polymer Bars
    Ahmed, Hemn Qader
    Jaf, Dilshad Kakasor
    Yaseen, Sinan Abdulkhaleq
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2020, 14 (01)
  • [6] Flexural behaviour of glass fibre-reinforced polymer and ultra-high-strength fibre-reinforced concrete composite beams subjected to elevated temperature
    Wijayawardane, Isuru Sanjaya Kumara
    Mutsuyoshi, Hiroshi
    Nguyen, Hai
    Manalo, Allan
    ADVANCES IN STRUCTURAL ENGINEERING, 2017, 20 (09) : 1357 - 1374
  • [7] Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities
    CoDyre, Luke
    Mak, Kenneth
    Fam, Amir
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2018, 20 (05) : 595 - 616
  • [8] Flexural behaviour of strengthened damaged steel beams using carbon fibre-reinforced polymer sheets
    Hou, Wenyu
    Wang, Lianguang
    Shi, Di
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Flexural behaviour of strengthened damaged steel beams using carbon fibre-reinforced polymer sheets
    Wenyu Hou
    Lianguang Wang
    Di Shi
    Scientific Reports, 12
  • [10] Mechanical behaviour of fibre-reinforced aluminium alloy plate an tube
    Scott, V.D.
    Bushby, R.S.
    Chen, A.S.
    Key Engineering Materials, 1997, 127-131 (Pt 2): : 815 - 822