Witten index and wall crossing

被引:114
|
作者
Hori, Kentaro [1 ]
Kim, Heeyeon [2 ]
Yi, Piljin [3 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
[2] Seoul Natl Univ, Dept Phys & Astron, Seoul 151147, South Korea
[3] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
来源
关键词
Supersymmetric gauge theory; Field Theories in Lower Dimensions; D-branes; ATIYAH-SINGER INDEX; BOUND-STATES; SUPERSYMMETRY; COHOMOLOGY; SYMMETRY; SPECTRUM; STRINGS;
D O I
10.1007/JHEP01(2015)124
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute the Witten index of one-dimensional gauged linear sigma models with at least N = 2 supersymmetry. In the phase where the gauge group is broken to a finite group, the index is expressed as a certain residue integral. It is subject to a change as the Fayet-Iliopoulos parameter is varied through the phase boundaries. The wall crossing formula is expressed as an integral at infinity of the Coulomb branch. The result is applied to many examples, including quiver quantum mechanics that is relevant for BPS states in d = 4 N = 2 theories.
引用
收藏
页数:107
相关论文
共 50 条
  • [1] Witten index and wall crossing
    Kentaro Hori
    Heeyeon Kim
    Piljin Yi
    Journal of High Energy Physics, 2015
  • [2] CONSTRUCTIVE WALL-CROSSING AND SEIBERG WITTEN
    Yi, Piljin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (3-4):
  • [3] Family Seiberg-Witten invariants and wall crossing formulas
    Li, TJ
    Liu, AK
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (04) : 777 - 823
  • [4] Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants
    Giulio Bonelli
    Antonio Sciarappa
    Alessandro Tanzini
    Petr Vasko
    Communications in Mathematical Physics, 2015, 333 : 717 - 760
  • [5] Seiberg-Witten invariants, the topological degree and wall crossing formula
    Starostka, Maciej
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06): : 2129 - 2137
  • [6] Equivariant cohomology and wall crossing formulas in Seiberg-Witten theory
    Cao, HD
    Zhou, J
    MATHEMATICAL RESEARCH LETTERS, 1998, 5 (06) : 711 - 721
  • [7] Vortex Partition Functions, Wall Crossing and Equivariant Gromov-Witten Invariants
    Bonelli, Giulio
    Sciarappa, Antonio
    Tanzini, Alessandro
    Vasko, Petr
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) : 717 - 760
  • [8] STABILITY CONDITIONS, WALL-CROSSING AND WEIGHTED GROMOV-WITTEN INVARIANTS
    Bayer, Arend
    Manin, Yu. I.
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (01) : 3 - 32
  • [9] Seiberg-Witten invariants for manifolds with b(+)=1 and the universal wall crossing formula
    Okonek, C
    Teleman, A
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (06) : 811 - 832
  • [10] A wall-crossing formula for Gromov–Witten invariants under variation of git quotient
    Eduardo González
    Chris T. Woodward
    Mathematische Annalen, 2024, 388 : 4135 - 4199