Parameter-dependent thermal conductivity of one-dimensional φ4 lattice

被引:27
|
作者
Li, Nianbei
Li, Baowen [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Comp Sci & Engn, Singapore 117542, Singapore
[3] NUS Grad Sch Integrat Sci & Engn, Singapore 117597, Singapore
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
HEAT-CONDUCTION; LATTICES; CHAINS;
D O I
10.1103/PhysRevE.76.011108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine the thermal conductivity of a one-dimensional phi(4) lattice with strong on-site harmonic potential. The expression for the thermal conductivity in terms of different parameters is derived from the effective phonon theory. Numerical calculations using nonequilibrium molecular dynamics are compared with the predictions of the effective phonon theory and the theory of the Peierls-Boltzmann transport equation. It is found that the numerical results are consistent with the prediction of the effective phonon theory in the intermediate parameter range and approach the predictions of Peierls-Boltzmann transport theory in the strongly pinned limit.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Parameter-dependent optimal stopping problems for one-dimensional diffusions
    Bank, Peter
    Baumgarten, Christoph
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1971 - 1993
  • [2] On the finite thermal conductivity of a one-dimensional rotator lattice
    Savin, AV
    Gendel'man, OV
    PHYSICS OF THE SOLID STATE, 2001, 43 (02) : 355 - 364
  • [3] On the finite thermal conductivity of a one-dimensional rotator lattice
    A. V. Savin
    O. V. Gendel’man
    Physics of the Solid State, 2001, 43 : 355 - 364
  • [4] Energy flow in one-dimensional lattice thermal conductivity
    Frizzera, W
    Monteil, A
    Capobianco, JA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (11): : 1715 - 1734
  • [5] ONE-DIMENSIONAL PARAMETER-DEPENDENT BOUNDARY-VALUE PROBLEMS IN HOLDER SPACES
    Masliuk, Hanna
    Soldatov, Vitalii
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2018, 24 (02): : 143 - 151
  • [6] PARAMETER-DEPENDENT ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEMS IN SOBOLEV SPACES
    Hnyp, Yevheniia
    Mikhailets, Vladimir
    Murach, Aleksandr
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [7] LATTICE THERMAL CONDUCTIVITY FOR A ONE-DIMENSIONAL HARMONIC ISOTOPICALLY DISORDERED CRYSTAL
    ALLEN, KR
    FORD, J
    PHYSICAL REVIEW, 1968, 176 (03): : 1046 - &
  • [8] Direct tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients
    Dolgov, Sergey V.
    Kazeev, Vladimir A.
    Khoromskij, Boris N.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 145 : 136 - 155
  • [9] ABNORMAL LATTICE THERMAL CONDUCTIVITY OF A ONE-DIMENSIONAL, HARMONIC, ISOTOPICALLY DISORDERED CRYSTAL
    RUBIN, RJ
    GREER, WL
    JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) : 1686 - &
  • [10] Thermal conductivity of one-dimensional Fibonacci quasicrystals
    Maciá, E
    PHYSICAL REVIEW B, 2000, 61 (10) : 6645 - 6653