Surface Operators and Knot Homologies

被引:3
|
作者
Gukov, Sergei [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
QUANTUM-FIELD THEORY; PAINLEVE-VI EQUATION; FLOER HOMOLOGY; GAUGE-THEORY; TOPOLOGICAL STRINGS; HOLOMORPHIC DISKS; EMBEDDED SURFACES; CUBIC SURFACES; MODULAR GROUP; INVARIANTS;
D O I
10.1007/978-90-481-2810-5_22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Topological gauge theories in four dimensions which admit surface operators provide a natural framework for realizing homological knot invariants. Every such theory leads to an action of the braid group oil branes oil the corresponding moduli space. This action plays a key role in the construction of homological knot invariants. We illustrate the general construction with examples based on Surface operators in N = 2 and N = 4 twisted gauge theories which lead to a categorification of the Alexander polynomial, the equivariant knot signature, and certain analogs of the Casson invariant.
引用
收藏
页码:313 / 343
页数:31
相关论文
共 50 条
  • [1] Knot polynomials and knot homologies
    Rasmussen, J
    GEOMETRY AND TOPOLOGY OF MANIFOLDS, 2005, 47 : 261 - 280
  • [2] The superpolynomial for knot homologies
    Dunfield, Nathan M.
    Gukov, Sergei
    Rasmussen, Jacob
    EXPERIMENTAL MATHEMATICS, 2006, 15 (02) : 129 - 159
  • [3] Gauge theory and knot homologies
    Gukov, Sergei
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2007, 55 (5-7): : 473 - 490
  • [4] Equivariant knot signatures and Floer homologies
    Li, WP
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (05) : 687 - 701
  • [5] NOVIKOV HOMOLOGIES IN KNOT-THEORY
    LAZAREV, AY
    MATHEMATICAL NOTES, 1992, 51 (3-4) : 259 - 262
  • [6] Knot homologies and generalized quiver partition functions
    Tobias Ekholm
    Piotr Kucharski
    Pietro Longhi
    Letters in Mathematical Physics, 113
  • [7] Knot homologies and generalized quiver partition functions
    Ekholm, Tobias
    Kucharski, Piotr
    Longhi, Pietro
    arXiv, 2021,
  • [8] HAMILTONIAN OPERATORS AND HOCHSCHILD HOMOLOGIES
    DALETSKII, YL
    TSYGAN, BL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1985, 19 (04) : 319 - 321
  • [9] Knot homologies and generalized quiver partition functions
    Ekholm, Tobias
    Kucharski, Piotr
    Longhi, Pietro
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (06)
  • [10] The knot invariant Y using grid homologies
    Foldvari, Viktoria
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2021, 30 (07)