Real hypersurfaces in quaternionic projective spaces with commuting tangent Jacobi operators

被引:2
|
作者
Ortega, M
Pérez, JD
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
关键词
D O I
10.1017/S0017089502001015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the classical differential equation of Jacobi fields, one naturally defines the Jacobi operator of a Riemannian manifold with respect to any tangent vector. A straightforward computation shows that any real, complex and quaternionic space forms satisfy that any two Jacobi operators commute. In this way, we classify the real hypersurfaces in quaternionic projective spaces all of whose tangent Jacobi operators commute.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条