Differential Privacy for Databases

被引:4
|
作者
Near, Joseph P. [1 ]
He, Xi [2 ]
机构
[1] Univ Vermont, Burlington, VT 05405 USA
[2] Univ Waterloo, Waterloo, ON, Canada
来源
FOUNDATIONS AND TRENDS IN DATABASES | 2021年 / 11卷 / 02期
关键词
QUERIES; NOISE;
D O I
10.1561/1900000066
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Differential privacy is a promising approach to formalizing privacy-that is, for writing down what privacy means as a mathematical equation. This book is provides overview of differential privacy techniques for answering database-style queries. Within this area, we describe useful algorithms and their applications, and systems and tools that implement them.
引用
收藏
页码:109 / 225
页数:117
相关论文
共 50 条
  • [1] Differential Privacy for Growing Databases
    Cummings, Rachel
    Krehbiel, Sara
    Lai, Kevin A.
    Tantipongpipat, Uthaipon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [2] Heterogeneous differential privacy for vertically partitioned databases
    Xia, Yang
    Zhu, Tianqing
    Ding, Xiaofeng
    Jin, Hai
    Zou, Deqing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (08):
  • [3] Longshot: Indexing Growing Databases using MPC and Differential Privacy
    Zhang, Yanping
    Bater, Johes
    Nayak, Kartik
    Machanavajjhala, Ashwin
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (08): : 2005 - 2018
  • [4] Epsolute: Efficiently Querying Databases While Providing Differential Privacy
    Bogatov, Dmytro
    Kellaris, Georgios
    Kollios, George
    Nissim, Kobbi
    O'Neill, Adam
    CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 2262 - 2276
  • [5] Minimax Optimal Estimation of Approximate Differential Privacy on Neighboring Databases
    Liu, Xiyang
    Oh, Sewoong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [6] Multi-Analyst Differential Privacy with Fine-Grained Provenance for Databases
    He, Xi
    SIGMOD Record, 2025, 53 (04) : 41 - 42
  • [7] IncShrink: Architecting Efficient Outsourced Databases using Incremental MPC and Differential Privacy
    Wang, Chenghong
    Bater, Johes
    Nayak, Kartik
    Machanavajjhala, Ashwin
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 818 - 832
  • [8] Multi-Analyst Differential Privacy with Fine-Grained Provenance for Databases
    He, Xi
    SIGMOD RECORD, 2024, 53 (04)
  • [9] PDP-SAG: Personalized Privacy Protection in Moving Objects Databases by Combining Differential Privacy and Sensitive Attribute Generalization
    Deldar, Fatemeh
    Abadi, Mahdi
    IEEE ACCESS, 2019, 7 : 85887 - 85902
  • [10] DP-Sync: Hiding Update Patterns in Secure Outsourced Databases with Differential Privacy
    Wang, Chenghong
    Bater, Johes
    Nayak, Kartik
    Machanavajjhala, Ashwin
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 1892 - 1905