Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data

被引:0
|
作者
Kim, SY [1 ]
Imoto, S [1 ]
Miyano, S [1 ]
机构
[1] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Minato Ku, Tokyo 1088639, Japan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as continuous data and can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into the complicated biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We demonstrate the effectiveness of our method by analyzing Saccharomyces cerevisiae gene expression data.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [1] Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    Kim, S
    Imoto, S
    Miyano, S
    BIOSYSTEMS, 2004, 75 (1-3) : 57 - 65
  • [2] CSI: a nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data
    Penfold, Christopher A.
    Shifaz, Ahmed
    Brown, Paul E.
    Nicholson, Ann
    Wild, David L.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (03) : 307 - 310
  • [3] Dynamic Bayesian Network Learning to Infer Sparse Models From Time Series Gene Expression Data
    Ajmal, Hamda B.
    Madden, Michael G.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (05) : 2794 - 2805
  • [4] Bayesian inference of gene regulatory networks using gene expression time series data
    Raddel, Nicole
    Kaderali, Lars
    BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2007, 4414 : 1 - +
  • [5] Bayesian time series regression with nonparametric modeling of autocorrelation
    Dey, Tanujit
    Kim, Kun Ho
    Lim, Chae Young
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1715 - 1731
  • [6] Bayesian time series regression with nonparametric modeling of autocorrelation
    Tanujit Dey
    Kun Ho Kim
    Chae Young Lim
    Computational Statistics, 2018, 33 : 1715 - 1731
  • [7] Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series
    Dondelinger, Frank
    Husmeier, Dirk
    Lebre, Sophie
    EUPHYTICA, 2012, 183 (03) : 361 - 377
  • [8] Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series
    Frank Dondelinger
    Dirk Husmeier
    Sophie Lèbre
    Euphytica, 2012, 183 : 361 - 377
  • [9] Inferring Gene Regulatory Networks from Gene Expression Data by a Dynamic Bayesian Network-Based Model
    Chai, Lian En
    Mohamad, Mohd Saberi
    Deris, Safaai
    Chong, Chuii Khim
    Choon, Yee Wen
    Ibrahim, Zuwairie
    Omatu, Sigeru
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2012, 151 : 379 - +
  • [10] Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
    Imoto, S
    Sunyong, K
    Goto, T
    Aburatani, S
    Tashiro, K
    Kuhara, S
    Miyano, S
    CSB2002: IEEE COMPUTER SOCIETY BIOINFORMATICS CONFERENCE, 2002, : 219 - 227